Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding R's set.seed() and Random States: Can Different Seeds Share Randomness?

  • vlogommentary
  • 2025-12-28
  • 0
Understanding R's set.seed() and Random States: Can Different Seeds Share Randomness?
With different seeds can Random States repeat in Rrandom
  • ok logo

Скачать Understanding R's set.seed() and Random States: Can Different Seeds Share Randomness? бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding R's set.seed() and Random States: Can Different Seeds Share Randomness? или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding R's set.seed() and Random States: Can Different Seeds Share Randomness? бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding R's set.seed() and Random States: Can Different Seeds Share Randomness?

Explore how R's random seed system works and whether different seeds can produce overlapping random states or identical random numbers. Learn best practices for simulation reproducibility.
---
This video is based on the question https://stackoverflow.com/q/79359689/ asked by the user 'Victor Feagins' ( https://stackoverflow.com/u/10029481/ ) and on the answer https://stackoverflow.com/a/79361425/ provided by the user 'user2554330' ( https://stackoverflow.com/u/2554330/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: With different seeds can Random States repeat in R

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to drop me a comment under this video.
---
Introduction

When running simulations in R, it's common to control randomness using set.seed(), often setting a new seed for each simulation run. For example:

[[See Video to Reveal this Text or Code Snippet]]

An alternate approach is setting one seed and running multiple repetitions:

[[See Video to Reveal this Text or Code Snippet]]

A natural question arises: Can different seeds lead to partially identical random states or random number overlap?



Do Different Seeds Produce Overlapping Random States?

Different seeds initialize the random number generator (RNG) state uniquely.

It is highly unlikely that two distinct seeds produce the exact same RNG state.

However, identical random numbers may appear coincidentally across sequences generated from different seeds. RNGs produce deterministic but pseudorandom sequences.

Example (hypothetical):

[[See Video to Reveal this Text or Code Snippet]]

Here the numbers 0.276 and 0.58 appear in both sequences, but this is by chance, not because the RNG states overlap.



Why Sequential Seeds May Not Yield Independent Runs

A common pitfall is generating multiple simulation values using sequential seeds, like:

[[See Video to Reveal this Text or Code Snippet]]

This approach:

Does not guarantee independence between generated numbers.

May violate assumptions in analysis, e.g., when calculating confidence intervals, which typically assume independent samples.

In contrast, using a single seed and generating all random variates in one sequence:

[[See Video to Reveal this Text or Code Snippet]]

produces values that pass standard independence tests.



Best Practices for Simulation Reproducibility

Avoid setting a new seed for each random number in a loop. Instead, set the seed once before running a simulation.

If you need reproducible access to individual runs:

Run simulations sequentially from one seed.

To replicate a particular outcome, you can store RNG states (.Random.seed) periodically.

To reproduce the kth simulation:

Restore the closest saved RNG state before k.

Advance the RNG state by running the simulation fewer times instead of resetting seeds repeatedly.

Note: The RNG state in R is relatively large (~2500 bytes), so storing many states requires significant space.



Summary

Different set.seed() values create unique RNG states with minimal risk of overlap.

Identical random numbers appearing with different seeds are coincidental, not due to shared RNG states.

Repeatedly setting sequential seeds for simulations can lead to undesirable dependencies.

The recommended way is to use one seed, generate all random numbers in sequence, and save RNG states if intermediate reproducibility is needed.

This approach ensures the statistical independence needed for valid inference and the reproducibility vital for simulation work.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]