Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть error analysis of some operations involved in the fast fourier transform

  • CodeHelp
  • 2025-06-25
  • 5
error analysis of some operations involved in the fast fourier transform
  • ok logo

Скачать error analysis of some operations involved in the fast fourier transform бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно error analysis of some operations involved in the fast fourier transform или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку error analysis of some operations involved in the fast fourier transform бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео error analysis of some operations involved in the fast fourier transform

Get Free GPT4.1 from https://codegive.com/0a4d826
Okay, let's delve into the error analysis of some operations within the Fast Fourier Transform (FFT). This is a crucial topic when dealing with real-world applications, as the FFT, while algorithmically efficient, is still subject to numerical errors due to finite-precision arithmetic on computers.

*Introduction: Why Error Analysis Matters for FFT*

The FFT is a cornerstone of signal processing, scientific computing, and many other fields. It efficiently computes the Discrete Fourier Transform (DFT), transforming a sequence of data points from the time domain to the frequency domain (and vice versa via the Inverse FFT).

However, the idealized mathematical DFT operates on real numbers, while computers use floating-point representations. These floating-point numbers have limited precision. The numerous arithmetic operations within the FFT, particularly complex multiplications and additions, introduce errors. As the size of the input data increases (larger FFTs), these errors can accumulate, potentially affecting the accuracy of the results.

*Sources of Error in FFT*

1. *Quantization Error (Input Data):* The original input data itself may be the result of measurements, analog-to-digital conversion, or other processes that introduce quantization error. This is inherent in the input and not directly caused by the FFT algorithm, but it will propagate through the computation.

2. *Floating-Point Round-off Error:* This is the most significant source of error in the FFT. Floating-point numbers have a finite number of bits to represent values. When arithmetic operations are performed, the true result is often rounded to the nearest representable floating-point number. This rounding introduces a small error with each operation. The errors propagate and accumulate through butterfly operations.

3. *Algorithm-Specific Errors:* Some FFT implementations might introduce minor errors based on their specific structure or approximations, especially in highly op ...

#numpy #numpy #numpy

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]