Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Create Two Separate Lists from a Count-Result in Python Using Pandas

  • vlogize
  • 2025-09-11
  • 0
How to Create Two Separate Lists from a Count-Result in Python Using Pandas
How can I create two separate lists from a count-result?pythonpandas
  • ok logo

Скачать How to Create Two Separate Lists from a Count-Result in Python Using Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Create Two Separate Lists from a Count-Result in Python Using Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Create Two Separate Lists from a Count-Result in Python Using Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Create Two Separate Lists from a Count-Result in Python Using Pandas

Discover how to efficiently generate two distinct lists for words and their frequency counts from a DataFrame in Python using Pandas. Perfect for data visualization!
---
This video is based on the question https://stackoverflow.com/q/67874271/ asked by the user 'Jesper Boenigk' ( https://stackoverflow.com/u/16155231/ ) and on the answer https://stackoverflow.com/a/67874505/ provided by the user 'falafelocelot' ( https://stackoverflow.com/u/4690237/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How can I create two separate lists from a count-result?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Create Two Separate Lists from a Count-Result in Python Using Pandas

When working with textual data in a DataFrame, you might find yourself needing to analyze the frequency of words in a specific column. Imagine you have a CSV file that contains short descriptions, and you want to count how often each word appears. While you might have successfully counted the words, the challenge lies in separating those counts into two manageable lists: one for the individual words and another for their respective counts. In this post, we'll walk through the solution to this common problem while using Python's Pandas library.

The Problem: Counting Words

Let's look at an example. You have a DataFrame derived from a CSV file containing a column named short_description. You've used the following code to count the words in that column:

[[See Video to Reveal this Text or Code Snippet]]

This code counts all the words and their occurrences, but the result is a single large string rather than two distinct lists. The task is now to separate these into:

A list of words

A list of their amount (counts)

The Solution: Using a Dictionary

Instead of handling a string manually, a more efficient approach is to use a dictionary. When you count words with value_counts(), it would be beneficial to convert the results directly into a dictionary format, which allows for easy extraction of keys (words) and values (counts). Here’s how to implement this solution with clear steps:

Step 1: Read the CSV File and Count Words

First, you read the CSV file and count the words in the short_description column as follows:

[[See Video to Reveal this Text or Code Snippet]]

In this case, word_counter is now a dictionary where each key-value pair corresponds to a word and its count.

Step 2: Extracting Words and Counts

Now that we have our word_counter in dictionary format, extracting the words and their counts into separate lists becomes a breeze:

[[See Video to Reveal this Text or Code Snippet]]

This code does two simple tasks:

amount will contain the counts of each word.

word_list will contain the corresponding words.

Conclusion: Visualizing Your Data

With your lists prepared, you're now ready to visualize your data using Pandas. For example, you can create bar plots to showcase the distribution of the most common words in your short descriptions. The clean separation into two lists will greatly facilitate this process, enabling clearer insights and more effective communication of your findings.

Final Thoughts

By efficiently separating word counts into distinct lists using a dictionary in Python's Pandas library, you can leverage this data for insightful visualizations and deeper analysis. This approach simplifies what could be a complex string manipulation into an organized and straightforward process. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]