Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Solving the Pandas merge_asof Challenge: How to Merge One-to-Multiple Dataframes

  • vlogize
  • 2025-04-11
  • 8
Solving the Pandas merge_asof Challenge: How to Merge One-to-Multiple Dataframes
Pandas merge_asof Question: one-to-multiple mergepythonpandasdataframemerge
  • ok logo

Скачать Solving the Pandas merge_asof Challenge: How to Merge One-to-Multiple Dataframes бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Solving the Pandas merge_asof Challenge: How to Merge One-to-Multiple Dataframes или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Solving the Pandas merge_asof Challenge: How to Merge One-to-Multiple Dataframes бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Solving the Pandas merge_asof Challenge: How to Merge One-to-Multiple Dataframes

Discover how to successfully use `merge_asof` in Pandas for one-to-multiple merges, ensuring all your data points are included!
---
This video is based on the question https://stackoverflow.com/q/72778033/ asked by the user 'FlyUFalcon' ( https://stackoverflow.com/u/5054655/ ) and on the answer https://stackoverflow.com/a/72778372/ provided by the user 'mozway' ( https://stackoverflow.com/u/16343464/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Pandas merge_asof Question: one-to-multiple merge

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Problem: One-to-Multiple Merge in Pandas

When working with time series data in Python using the Pandas library, you may run into a common scenario: merging two dataframes based on time stamps. A frequent challenge arises when two entries in one dataframe share the same time point. For instance, if you have a dataframe A with stock prices recorded at a specific time and a dataframe B that logs multiple trading volumes at or around that same time, you usually want to merge them in such a way that all entries from dataframe B are maintained in the final output.

Consider the following dataframes:

Dataframe A

timetickerprice09:10:13VOD110.96Dataframe B

timetickervolume09:10:12VOD3541209:10:12VOD12343When you attempt to merge these dataframes using merge_asof, you'll find that only one entry from dataframe B gets matched, potentially overlooking valuable data.

The Dilemma

If you run the following command:

[[See Video to Reveal this Text or Code Snippet]]

The result will look like this:

timetickerpricevolume09:10:13VOD110.9612343You’ll notice that while one volume entry from dataframe B is preserved, the other is lost—leading to incomplete data representation.

The Solution: Use Double Merge Method

To solve this issue while still harnessing the power of merge_asof, you can perform a double merge. Here's how to do it step by step:

Step 1: Prepare Dataframe B

Before doing the merge, add an index to dataframe B which groups the same time entries together. Use the ngroup() function to achieve this.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Perform the First Merge

Next, use merge_asof to make the initial merge based on time and ticker.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Complete the Merge

Finally, perform a classical merge using the ticker and the new index to ensure all entries are accounted for.

[[See Video to Reveal this Text or Code Snippet]]

Final Output

After executing these steps, your final output will yield:

time_xtickerpricevolume_xidxtime_yvolume_y09:10:13VOD110.9612343009:10:123541209:10:13VOD110.9612343009:10:1212343Conclusion

Employing this double merge method not only retains all data points from dataframe B but also correctly associates them with the relevant entries in dataframe A. It’s a powerful approach for dealing with one-to-multiple merges in time series data using Pandas.

With these steps, you can confidently proceed to work with time-based data merges that honor every entry, ensuring full data utilization!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]