Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Calculate the time difference between two hh:mm columns in a Pandas DataFrame

  • vlogize
  • 2025-10-08
  • 0
Calculate the time difference between two hh:mm columns in a Pandas DataFrame
Calculate the time difference between two hh:mm columns in a pandas dataframepythonpandas
  • ok logo

Скачать Calculate the time difference between two hh:mm columns in a Pandas DataFrame бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Calculate the time difference between two hh:mm columns in a Pandas DataFrame или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Calculate the time difference between two hh:mm columns in a Pandas DataFrame бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Calculate the time difference between two hh:mm columns in a Pandas DataFrame

Learn how to efficiently calculate the `time difference` between two hh:mm formatted columns in a Pandas DataFrame, even when the End time falls on the next day.
---
This video is based on the question https://stackoverflow.com/q/64582059/ asked by the user 'Alex Man' ( https://stackoverflow.com/u/5909849/ ) and on the answer https://stackoverflow.com/a/64582127/ provided by the user 'azro' ( https://stackoverflow.com/u/7212686/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Calculate the time difference between two hh:mm columns in a pandas dataframe

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Calculating the Time Difference Between Two hh:mm Columns in a Pandas DataFrame

When analyzing time-based data in Python with Pandas, you may encounter the need to calculate the time difference between two columns formatted in hh:mm. This can become tricky when the end time falls on the next day, leading to incorrect calculations. In this guide, we'll explore how to properly handle this situation and obtain accurate time differences, even for large datasets.

The Problem: Time Calculations with Next-Day Scenarios

Consider the following example from a CSV file:

[[See Video to Reveal this Text or Code Snippet]]

In this dataset, the End time of the second row (2:00) occurs the next day after Start time (22:30). Using a simple subtraction in Pandas can yield negative time differences, which are incorrect in context.

Here’s how you initially might attempt to calculate the difference:

[[See Video to Reveal this Text or Code Snippet]]

This naive approach would lead to unintended results, especially for rows where the end time is on the next day.

The Solution: Utilizing Timedelta for Accurate Results

To accurately compute the time difference while accounting for the next day, we can use a clever technique that involves the use of the timedelta object. The trick is to adjust the time calculations in a way that allows us to always work with positive values. Here's how it's done:

Step-by-Step Explanation

Understand the Needed Adjustment:

We can add a timedelta of 24 hours to the difference, which effectively converts all the negative results into positive values.

Applying Modulus Operation:

After adding 24 hours, we apply the modulus operator % with a timedelta of 24 hours to calculate the correct difference, effectively rolling over any values greater than 24 hours back to the appropriate time frame.

The Implementation

In your Pandas DataFrame, you can achieve this with the following code:

[[See Video to Reveal this Text or Code Snippet]]

This code snippet calculates the duration correctly, even in cases where the end time is on the next day.

What It Produces

Executing the above code will yield a new column named duration, showing the correct time differences:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Working with time data in Pandas can sometimes be confusing, especially when dealing with transitions from one day to another. By utilizing the timedelta approach and applying a simple adjustment with the modulus operator, we can efficiently calculate correct time differences even in complex scenarios. This method maintains accuracy and performance, making it suitable for handling large datasets.

Now you have a clear, effective strategy for dealing with time differences in Pandas! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]