Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Challenges in using machine learning for financial monitoring By Leah McFarland, State Street

  • Global Big Data Conference
  • 2022-03-22
  • 83
Challenges in using machine learning for financial monitoring By Leah McFarland, State Street
  • ok logo

Скачать Challenges in using machine learning for financial monitoring By Leah McFarland, State Street бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Challenges in using machine learning for financial monitoring By Leah McFarland, State Street или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Challenges in using machine learning for financial monitoring By Leah McFarland, State Street бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Challenges in using machine learning for financial monitoring By Leah McFarland, State Street

Leah McFarland, Product Management, State Street is speaker at Global Artificial Intelligence Virtual Conference Mar 17th to 19th 2022.

Topic: Challenges in using machine learning for financial monitoring

Abstract:
Shifting from rules-based to machine learning-based financial monitoring reduces false positive alerts and increases escalation rates (ie, alerts selected for further investigation)
In conjunction with entity resolution/network generation logic, it also enables enhanced visualizations in support of investigations
However, notwithstanding the above, there continue to be multiple challenges in making this important transition, including:
Supervised machine learning uses suspicious activity reports (SARs) as a target, but these may be of low quality (eg, “defensive” filing)
Changes in underlying data over time (ie, data drift) require model retraining, but regulatory requirements on model validation extend this process
To move toward real-time data processing and/or more continuous model retraining requires greater maturity in model lifecycle management
There remains much greater scope for reduction of false positives, given:
Rates are still high even after initial machine learning adoption
Historical approaches to monitoring models have been backward (eg, identify rare data pattern and impose blanket rules)
Regulations and their application are ambiguous in not significantly distinguishing between low- and high-risk activities
There is insufficient attention to how compliance costs serve as a barrier to access to financial services
Increasing adoption of blockchain involves a novel data processing/storage mechanism only beginning to be subjected to financial monitoring

Speaker Bio:
Leah McFarland is Anti-Money Laundering (AML) Transaction Monitoring Solutions Head at State Street, responsible for defining and implementing the strategy to transition from a rules-based to a features-based monitoring approach using machine learning on a big data analytics platform. Before joining State Street, she served as AML Business Solutions Head at Citibank, where she led global implementation for big data, robotic process automation, and data visualization and pioneered the use of agile project delivery. Prior to that, Leah worked at FSVC, where she managed a $5 million portfolio delivering risk management assistance to financial institutions in the Middle East, North Africa, Sub-Saharan Africa, and Eastern Europe. She began her career as a diplomat for the U.S. Department of State, serving in Moscow, the Secretary of State’s operations center in Washington, DC, and Sao Paulo. Leah has an M.A. in International Affairs from the University of California at San Diego and speaks Russian, Portuguese, Spanish, and some Mandarin Chinese.

Event Agenda: http://www.globalbigdataconference.co...

Speaker's: http://www.globalbigdataconference.co...

View More: http://www.globalbigdataconference.co...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]