RNN vs LSTM vs GRU vs Transformers | Deep Learning & NLP Architectures Explained

Описание к видео RNN vs LSTM vs GRU vs Transformers | Deep Learning & NLP Architectures Explained

#rnn #lstm #gru #transformers #vanishinggradient #nlp #ai #llm
Confused about RNNs, LSTMs, GRUs, and transformers? In this video, we'll break down the key differences between these popular sequence modeling techniques. We'll explore their strengths, weaknesses, and real-world applications.

Key Topics:
1. Recurrent Neural Networks (RNNs)
2. Long Short-Term Memory (LSTM) networks
3. Gated Recurrent Units (GRUs)
4. Transformer architecture
5. Comparison and contrast of these models
6. Evolution of sequence modeling techniques
7. Vanishing gradient problem
8. The power of attention mechanism
9. Transformer architecture and its components

Business email id- [email protected]
do mail here

For Guidance - topmate.io/sai_kumar_reddy_n?utm_source=topmate&utm_medium=popup&utm_campaign=SocialProfile

Join this channel to get access to the perks:
   / @saikumarreddyn  

Python Video-    • Python Simplified | Introduction To D...  

Transformers GitHub Link - https://github.com/ApexIQ/NLP_Concepts

Do Support the channel friends.
telegram link- https://t.me/saikumarreddyYT

article link-   / oops-02-inheritance  

And also Guys follow me on social media links are available below.

Instagram-   / sai_kumar_datascientist  
LinkedIn-   / sai-kumar-reddy-n-data-scientist  
twitter-   / 123saikumar9036  


#Transformers #ArtificialIntelligence #MachineLearning #DeepLearning #AI #NLP #TransformersExplained #GPT #BERT #DeepLearningTutorial
#transformers
#decoder
#maskedmultiheadattention
#deeplearning
#machinelearning
#nlp
#googleai
#artificialintelligence
#tech
#tutorial
#artificialintelligence
#tech
#tutorial
#RNN #LSTM #GRU #transformer
#deeplearning #machinelearning #AI #artificialintelligence
#nlp #naturallanguageprocessing #sequencemodeling
#tech #tutorial #datascience
#computervision #imageprocessing
#python #tensorflow #pytorch

Комментарии

Информация по комментариям в разработке