Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mastering Multi-Level GroupBy and Sum in Pandas

  • vlogize
  • 2025-09-19
  • 1
Mastering Multi-Level GroupBy and Sum in Pandas
multi level groupby and sum in pandaspythonpandaspandas groupby
  • ok logo

Скачать Mastering Multi-Level GroupBy and Sum in Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mastering Multi-Level GroupBy and Sum in Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mastering Multi-Level GroupBy and Sum in Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mastering Multi-Level GroupBy and Sum in Pandas

Learn how to implement `multi-level groupby` and sum in Pandas DataFrames effectively. This guide provides clear instructions and examples for filtering and analyzing data.
---
This video is based on the question https://stackoverflow.com/q/62515529/ asked by the user 'Ashutosh Srivastava' ( https://stackoverflow.com/u/8090479/ ) and on the answer https://stackoverflow.com/a/62515688/ provided by the user 'DavideBrex' ( https://stackoverflow.com/u/13328010/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: multi level groupby and sum in pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering Multi-Level GroupBy and Sum in Pandas: A Complete Guide

When working with data in Python, particularly using the Pandas library, you'll face a range of challenges. One common problem arises when attempting to filter a DataFrame based on multiple columns and then aggregating the results, especially when you need to analyze data at multiple levels. In this guide, we'll discuss how to accomplish multi-level groupby operations and sums effectively.

Understanding the Problem

Imagine you have a DataFrame that contains sales data, broken down by product over different weeks and years. Your goal is to summarize this data at two levels: first by year and then by week. You want to find the total sales for the product as well as counts for two additional metrics, se and sqe, without merging these metrics into a single value.

Example DataFrame

Consider the following sample DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

This DataFrame looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Expected Output

The desired output aggregates the product sales along with the se and sqe counts for each week within each year, structured in a nested dictionary format:

[[See Video to Reveal this Text or Code Snippet]]

Implementing the Solution

Now, let’s break down how to achieve this using Pandas.

Step 1: Grouping the Data

To perform a multi-level groupby operation, we can use the following code snippet:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Understanding the Code

Let’s dissect what each part of this line does:

df.groupby(by="year"): This part groups the entire DataFrame by the year column.

.apply(lambda grp: ...): We then apply a function to each group (each year) created in the previous step.

grp.groupby(by="week"): Inside the lambda function, we group the data further, this time by the week within each year.

[["product", "se", "sqe"]].sum(): This selects the columns we want to aggregate (here, these are product, se, sqe) and computes their sums.

.to_dict("index"): This converts the resulting DataFrame into a dictionary format, where each inner dictionary corresponds to a week and contains sums for product, se, and sqe.

.to_dict(): Finally, we convert the result to a dictionary at the outer level so that it provides one key for each year.

Final Output

When you run the provided code, you will get:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Utilizing the groupby functionality in Pandas allows you to effectively summarize and analyze complex datasets by implementing multi-level groupings. With the method outlined above, you can derive insightful summaries from your data on multiple criteria effortlessly. Whether you are handling sales data, survey results, or any other form of quantitative data, mastering these aggregation techniques can significantly improve your data analysis capabilities in Python.

Feel free to experiment with your own datasets and see how you can apply these methods to gain even deeper insights!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]