How AI Learns to Imagine: The Magic of Variational Autoencoders (VAE) - Level 3

Описание к видео How AI Learns to Imagine: The Magic of Variational Autoencoders (VAE) - Level 3

Variational Autoencoders (https://arxiv.org/abs/1906.02691) (VAEs) are a fascinating type of deep learning model that combines neural networks with probabilistic modeling.

This podcast will guide you through the key ideas behind VAEs, including the concept of latent spaces, the Evidence Lower Bound (ELBO), and the reparameterization trick.

We'll explain the information-theoretic interpretation of the VAE objective, discuss techniques for improving the flexibility of inference models, and explore advanced generative architectures.

Online Tutorials:

• "Variational Autoencoders: How They Work and Why They Matter (https://www.datacamp.com/tutorial/var...) " on DataCamp: This tutorial explains the workings of VAEs and their significance in generative modeling. (https://www.datacamp.com/tutorial/var...)

• "A Deep Dive into Variational Autoencoders with PyTorch (https://pyimagesearch.com/2023/10/02/...) " on PyImageSearch: Provides a step-by-step guide to implementing VAEs using PyTorch, complete with code examples.

#genai #levelup #level3 #learn #generativeai #ai #aipapers #podcast #deeplearning #machinelearning #vae #encoder

Комментарии

Информация по комментариям в разработке