Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Configure the Keras Optimizer and Learning Rate Using config.yaml

  • vlogize
  • 2025-05-20
  • 0
How to Configure the Keras Optimizer and Learning Rate Using config.yaml
How to configure the Keras Optimizer and Learning rate using config.yaml file?pythonmachine learningkerasdeep learningyaml
  • ok logo

Скачать How to Configure the Keras Optimizer and Learning Rate Using config.yaml бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Configure the Keras Optimizer and Learning Rate Using config.yaml или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Configure the Keras Optimizer and Learning Rate Using config.yaml бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Configure the Keras Optimizer and Learning Rate Using config.yaml

Learn how to easily configure the `Keras Optimizer` and learning rate in your machine learning projects using the `config.yaml` file, simplifying model management.
---
This video is based on the question https://stackoverflow.com/q/70100422/ asked by the user 'thangaraj1980' ( https://stackoverflow.com/u/2707200/ ) and on the answer https://stackoverflow.com/a/72035478/ provided by the user 'Jin Tokaso' ( https://stackoverflow.com/u/12168069/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to configure the Keras Optimizer and Learning rate using config.yaml file?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Configure the Keras Optimizer and Learning Rate Using config.yaml

When working with machine learning models using Keras, configuration management can sometimes become a complex task. One common challenge faced by developers is efficiently configuring optimizers and learning rates. This guide aims to demystify the process and guide you in setting up your optimizer and learning rate using a config.yaml file.

The Problem at Hand

You’ve already defined a series of parameters in your config.yaml, including the optimizer type and learning rate, like this:

[[See Video to Reveal this Text or Code Snippet]]

Upon calling these values in your main.py, an issue arises in the function where the optimizer is defined. When you try to pass the optimizer type directly from the configuration file, it results in an error. Thus, you might find that you need to manually substitute the optimizer rather than using the configuration.

Here’s a snippet of your current setup that faces challenges:

[[See Video to Reveal this Text or Code Snippet]]

This leads to errors since OPTIMIZER should be the actual optimizer class rather than the string representation of its name. So how can you resolve this and directly use your config.yaml values? Let’s explore.

The Solution: Using optimizers.deserialize

Fortunately, Keras provides a way to configure your optimizer dynamically by utilizing the optimizers.deserialize method. This allows you to specify optimizer parameters in your YAML configuration file in a structured way.

Step 1: Update Your config.yaml Format

Instead of having just the optimizer name, modify your optimizer section in config.yaml to include both the class name and its parameters as follows:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Deserialize the Optimizer in Your Code

In your main.py, instead of using string substitution, deserialize the optimizer configuration using the following code:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Compile Your Model

Finally, compile your model as you initially intended, but now using the deserialized optimizer directly:

[[See Video to Reveal this Text or Code Snippet]]

Example Summary

Here’s how your entire flow looks:

Define optimizer in config.yaml:

[[See Video to Reveal this Text or Code Snippet]]

Deserialize and compile in main.py:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By following these steps, you can easily manage your optimizer configurations through a config.yaml file, making your model setup more manageable and flexible. This practice not only improves code readability but also enhances your project's configurability, allowing you to switch optimizers or parameters without code changes.

Now you can streamline your Keras models and focus more on building and training them effectively. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]