Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Qaether Theory: Cyclical Sequences as Color Charges

  • Theory Qaether
  • 2025-08-24
  • 2
Qaether Theory: Cyclical Sequences as Color Charges
  • ok logo

Скачать Qaether Theory: Cyclical Sequences as Color Charges бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Qaether Theory: Cyclical Sequences as Color Charges или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Qaether Theory: Cyclical Sequences as Color Charges бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Qaether Theory: Cyclical Sequences as Color Charges

Summary: Three Types of Cyclic Orders and Color Charges in Qaether Theory

In Qaether theory, *the three cyclic orders of reading a plaquette (closed loop on the lattice) are identified with the three color charges* (red, green, blue). Interestingly, this works consistently in Qaether but not in standard lattice gauge theory (LGT).

Why it fails in standard LGT

**Gauge and conjugacy invariance**: Physical observables (e.g., Wilson loops) depend only on conjugacy classes, not on the reading order of the plaquette. Thus, cyclic order cannot serve as a physical quantum number.
**Color is representation-based**: In QCD, color charge comes from the representation of matter fields ($3, \bar 3$, …), not from a specific plaquette arrangement.
**Symmetry issues**: A plaquette’s cyclic permutations do not yield stable or gauge-invariant labels for color.

Why it works in Qaether

**Different basic degrees of freedom**: Qaether uses SU(2) quaternion states and discrete $\mathbb{Z}_{12}$ phase labels, fixed by a topological flux condition $\sum \Delta \phi = 2\pi$.
**Three dihedral orbits**: Among the 24 cyclic permutations of four distinct plaquette values, only three remain distinct under $D_4$ lattice symmetries (rotation/reflection). These three equivalence classes are identified as the colors $\{r,g,b\}$.
**SU(3) embedding**: These classes map naturally to SU(3) weight vectors, reproducing color neutrality ($\omega_1+\omega_2+\omega_3=0$), anti-color, and root structures. Dynamic gluons are incorporated through exponential couplings.
**Consistency via Bianchi identity**: Flux conservation enforces Y-shaped junction rules, ensuring color charge conservation.
**New observational layer**: In Qaether, color emerges as a topological class of micro-arrangements protected by flux constraints, unlike in standard LGT.

Limitations

If plaquette values are not all distinct, the number of classes reduces (3 → 2 → 1).
Without flux fixation, color labels lose physical meaning.
Strong tunneling between classes can break the “color superselection” unless protected by a large energy gap.

---

*Conclusion:*
In standard LGT, plaquette cyclic order has no physical meaning, but in Qaether theory, it defines *three topologically distinct classes* that naturally map to SU(3) colors and reproduce gauge interactions. Thus, the identification “three cyclic orders = three colors” is physically valid only in the Qaether framework.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]