Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Algo Hour – Geometric Methods for Machine Learning and Optimization | Melanie Weber

  • Stitch Fix Multithreaded
  • 2021-03-15
  • 744
Algo Hour – Geometric Methods for Machine Learning and Optimization | Melanie Weber
  • ok logo

Скачать Algo Hour – Geometric Methods for Machine Learning and Optimization | Melanie Weber бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Algo Hour – Geometric Methods for Machine Learning and Optimization | Melanie Weber или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Algo Hour – Geometric Methods for Machine Learning and Optimization | Melanie Weber бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Algo Hour – Geometric Methods for Machine Learning and Optimization | Melanie Weber

Many machine learning applications involve non-Euclidean data, such as graphs, strings or matrices. In such cases, exploiting Riemannian geometry can deliver algorithms that are computationally superior to standard (Euclidean) approaches. This has resulted in an increasing interest in Riemannian methods in the machine learning community. In this talk, I will present two lines of work that utilize Riemannian methods in machine learning. First, we consider the task of learning a robust classifier in hyperbolic space. Such spaces have received a surge of interest for representing large-scale, hierarchical data, due to the fact that they achieve better representation accuracy with fewer dimensions. We consider an adversarial approach for learning a robust large margin classifier that is provably efficient. We also discuss conditions under which such hyperbolic methods are guaranteed to outperform their Euclidean counterparts. Secondly, we introduce Riemannian Frank-Wolfe (RFW) methods for constrained optimization on manifolds. Here, we discuss matrix-valued tasks for which RFW improves on classical Euclidean approaches, including the computation of Riemannian centroids and the synchronization of data matrices.

Find all the Stitch Fix Algorithms posts and updates on the Multithreaded Blog at https://multithreaded.stitchfix.com/b...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]