Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Identify Users with Value Changes from C to P in SQL - Big Query

  • vlogize
  • 2025-10-02
  • 0
How to Identify Users with Value Changes from C to P in SQL - Big Query
How to Find Last Change row in SQL - Big Querysqlgoogle bigquery
  • ok logo

Скачать How to Identify Users with Value Changes from C to P in SQL - Big Query бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Identify Users with Value Changes from C to P in SQL - Big Query или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Identify Users with Value Changes from C to P in SQL - Big Query бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Identify Users with Value Changes from C to P in SQL - Big Query

Discover how to use SQL queries in Google Big Query to find the count of users whose values changed from `C` to `P`. A step-by-step guide with practical examples.
---
This video is based on the question https://stackoverflow.com/q/63914607/ asked by the user 'Sharan' ( https://stackoverflow.com/u/3799547/ ) and on the answer https://stackoverflow.com/a/63919334/ provided by the user 'Gordon Linoff' ( https://stackoverflow.com/u/1144035/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to Find Last Change row in SQL - Big Query

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Identify Users with Value Changes from C to P in SQL - Big Query

Have you ever encountered the need to analyze data changes in a database, specifically how values transition over time? This is a common requirement in data analysis, especially when dealing with user information or status updates. In this guide, we will explore how to leverage SQL in Google Big Query to find users whose statuses changed from C to P.

Problem Statement

Let's consider a situation where we have a table with user IDs, timestamps, and values that can either be C or P. Our goal is to identify the number of users whose status has changed from C to P, even if they revert back to C later. Here’s the sample data we are working with:

[[See Video to Reveal this Text or Code Snippet]]

From the above data, we can see that userid 123 transitions from C to P, which is what we want to capture.

Solution Overview

To tackle this problem, we will be using the LAG() window function in SQL. This function allows us to access the previous value of a row within a specified partition, which makes it perfect for tracking changes over time.

Step-by-Step Breakdown of the SQL Query

Now that we have clearly defined our problem, let's walk through the SQL query that will pinpoint users who transitioned from C to P:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Query

Selecting Counts:

COUNT(*) AS num_changes: This counts the total number of changes detected from C to P.

COUNT(DISTINCT userid) AS num_users_with_change: This counts how many distinct users have made the transition from C to P, ensuring that each user is only counted once.

Using the LAG Function:

LAG(value) OVER (PARTITION BY userid ORDER BY timestamp): This retrieves the previous value for each userid, based on the order of timestamps. Essentially, it lets us know what the user’s value was before the current entry.

Filtering for Valid Transitions:

The WHERE clause then filters the results to include only those rows where the current value is P and the previous value (from LAG) was C. This is critical because it narrows our findings to the specific change we are interested in.

Final Thoughts

By employing the LAG() function along with proper aggregation, we can efficiently analyze user status changes, such as from C to P. This query is adaptable and can be modified to track changes between any two states you might be interested in.

Having a robust understanding of how to navigate SQL queries, especially in environments like Google Big Query, is a valuable skill in the realm of data analytics. We hope this guide empowers you to perform similar analyses on your datasets. If you have further questions or need assistance with SQL queries, feel free to reach out in the comments below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]