Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Converting Circle Collision Functions to Handle a 3D Cylinder Collision

  • vlogize
  • 2025-05-21
  • 0
Converting Circle Collision Functions to Handle a 3D Cylinder Collision
Turning a circle collision function into a 3d cylinder functiongeometrylinecollisionintersection
  • ok logo

Скачать Converting Circle Collision Functions to Handle a 3D Cylinder Collision бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Converting Circle Collision Functions to Handle a 3D Cylinder Collision или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Converting Circle Collision Functions to Handle a 3D Cylinder Collision бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Converting Circle Collision Functions to Handle a 3D Cylinder Collision

Learn how to transform a 2D circle collision detection function to work with 3D cylinder collisions, using vector projection techniques for accurate results.
---
This video is based on the question https://stackoverflow.com/q/69321879/ asked by the user 'KiraHoneybee' ( https://stackoverflow.com/u/15523510/ ) and on the answer https://stackoverflow.com/a/69323702/ provided by the user 'Spektre' ( https://stackoverflow.com/u/2521214/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Turning a circle collision function into a 3d cylinder function

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Converting Circle Collision Functions to Handle 3D Cylinder Collisions

When working with 3D graphics and physics simulations, collision detection becomes crucial, especially when dealing with complex shapes like a 3D cylinder. If you already have a working function for intersecting a line with a 2D circle, you might wonder how to adapt that function to handle a cylinder in three dimensions. In this post, we'll explore how to convert a 2D circle collision function into a 3D cylinder function effectively.

The Problem: Understanding the Challenge

The original function allows us to determine the intersection points between a line segment and a circle on a 2D plane. However, the complexity increases significantly when we transition from a circle to an infinite cylinder. Here are the main points to consider:

Tilt Axis of the Cylinder: Unlike a circle, which remains constant in a plane, a cylinder extends infinitely in both directions and can be tilted along an axis.

Line and Cylinder Intersection: The line may enter and exit the cylinder at different points, making the intersection more complex than a flat circle.

Given these challenges, a straightforward transformation to a sphere won't suffice, as it cannot accurately represent how a tilted line might interact with a cylinder.

The Solution: Projecting to 2D

To tackle this, we will project our 3D problem into a 2D plane that is parallel to the base of the cylinder. This approach simplifies the collision detection and allows us to use our existing code designed for circles.

Step 1: Define the Cylinder Parameters

We need to understand the structure of our cylinder:

Axis Point (p): Any point on the axis of the cylinder.

Radius (r): The radius of the cylinder.

Unit Direction Vector (d): The direction of the cylinder's axis.

Step 2: Determine Basis Vectors

Next, we need to create two unit basis vectors (u and v) to describe the base of the cylinder. This can be achieved using the cross product with the cylinder's direction vector:

[[See Video to Reveal this Text or Code Snippet]]

Here, we ensure that the two basis vectors are orthogonal—v being similar to the X-axis and u adapted based on the cylinder's directional vector.

Step 3: Project the Points into 2D

Now that we have our vectors, we can project the original 3D points into 2D space:

[[See Video to Reveal this Text or Code Snippet]]

This projection compresses the data, allowing us to work with 2D points instead of 3D points while still preserving the essential relationships.

Step 4: Utilize Existing Circle Collision Function

With the projected points, you can simply use your pre-existing function for line-circle intersections, now operating in a 2D context:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion: Bridging the Gap

Transforming a 2D circle collision function into one that can work with a tilted 3D cylinder is attainable through careful vector projection. By calculating the appropriate basis vectors and projecting our 3D points onto a plane parallel to the cylinder's base, we can apply our standard line-circle intersection logic with minor adjustments. This method not only simplifies the implementation but also allows for accurate detection of interactions with cylindrical shapes in 3D space.

Now you're equipped with the tools to handle cylinder collisions effectively in your 3D applications!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]