Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding sum() in PostgreSQL: Fixing Individual Value Returns for Aggregated Queries

  • vlogize
  • 2025-10-03
  • 0
Understanding sum() in PostgreSQL: Fixing Individual Value Returns for Aggregated Queries
sum() in postgresql is returning individual rather than aggregated valuessqldatabasepostgresqldatetimesum
  • ok logo

Скачать Understanding sum() in PostgreSQL: Fixing Individual Value Returns for Aggregated Queries бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding sum() in PostgreSQL: Fixing Individual Value Returns for Aggregated Queries или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding sum() in PostgreSQL: Fixing Individual Value Returns for Aggregated Queries бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding sum() in PostgreSQL: Fixing Individual Value Returns for Aggregated Queries

Discover how to accurately use the `sum()` function in PostgreSQL to aggregate sales data by month instead of returning individual sale values.
---
This video is based on the question https://stackoverflow.com/q/63459589/ asked by the user 'ida nicole herbert' ( https://stackoverflow.com/u/13783722/ ) and on the answer https://stackoverflow.com/a/63459618/ provided by the user 'GMB' ( https://stackoverflow.com/u/10676716/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: sum() in postgresql is returning individual rather than aggregated values

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding sum() in PostgreSQL: Fixing Individual Value Returns for Aggregated Queries

If you're working with PostgreSQL and trying to calculate aggregated sales figures, you may run into a common issue: the sum() function returns individual sale amounts instead of the aggregated total for a specified time period. This can lead to confusion when analyzing sales data, particularly when you're expecting a consolidated view of your financial performance.

In this guide, we'll dive into the problem of getting the sum() function to work correctly for your needs and provide a step-by-step guide to refining your SQL query to achieve the desired results.

The Problem

You may find yourself in a situation where you want to analyze sales data from a purchases table, specifically focusing on summarizing sales income by month for various stores. However, when running your SQL query with the sum() function, you notice that the output does not represent the aggregated monthly totals that you expect. Instead, each individual sale is reported as if it were the monthly total.

Here’s a sample query that might cause this issue:

[[See Video to Reveal this Text or Code Snippet]]

In this query, the root of the issue lies in how the GROUP BY clause is configured, which ultimately affects the aggregation of your sales data.

The Solution

To successfully aggregate your sales data by month, you need to adjust your grouping logic. The key is to group by month rather than by individual timestamps. Let's break down the solution into clear steps.

Step 1: Use the Correct Date Truncation

Instead of grouping by the exact timestamp, use the date_trunc('month', timestamp) function. This function will truncate the timestamp to the first day of the month and allow for proper aggregation of sales totals.

Revised Query Example

Here’s the updated SQL query that will provide you with the aggregated results:

[[See Video to Reveal this Text or Code Snippet]]

date_trunc: This function is crucial for simplifying the timestamp to the first day of the month.

GROUP BY: Grouping by store_id and the truncated month ensures that your results show total sales per store per month.

Step 2: Further Simplification Using Positional Arguments

PostgreSQL allows for the use of positional arguments in the GROUP BY and ORDER BY clauses. This can make your query more concise:

[[See Video to Reveal this Text or Code Snippet]]

This version of the query utilizes 1 and 2 to refer to the first and second columns respectively, simplifying the query structure without losing clarity.

Conclusion

By correcting how you group your data in PostgreSQL, you can effectively aggregate sales income by month rather than displaying individual sale values. Remember to use date_trunc() for accurate month-level aggregation and consider positional arguments for a cleaner query. Now, you'll be able to generate reports that meaningfully reflect your sales performance, helping you make better-informed business decisions.

Happy querying!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]