Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Negative evidence for weakly supervised learning

  • LIVIA Montreal
  • 2023-01-31
  • 5
Negative evidence for weakly supervised learning
  • ok logo

Скачать Negative evidence for weakly supervised learning бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Negative evidence for weakly supervised learning или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Negative evidence for weakly supervised learning бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Negative evidence for weakly supervised learning

by Soufiane Belhabi, postdoctoral fellow at LIVIA

Résumé / Summary:
Class Activation Mapping (CAM) methods have recently gained much attention for weakly-supervised object localization (WSOL) tasks. They allow for CNN visualization and interpretation without training on fully annotated image datasets. CAM methods are typically integrated within off-the-shelf CNN backbones, such as ResNet50. Due to convolution and pooling operations, these backbones yield low resolution CAMs with a down-scaling factor of up to 32, contributing to inaccurate localizations. Interpolation is required to restore full size CAMs, yet it does not consider the statistical properties of objects, such as color and texture, leading to activations with inconsistent boundaries, and inaccurate localizations. As an alternative, we introduce a generic method for parametric upscaling of CAMs that allows constructing accurate full resolution CAMs (FCAMs). In particular, we propose a trainable decoding architecture that can be connected to any CNN classifier to produce highly accurate CAM localizations. Given an original low resolution CAM, foreground and background pixels are randomly sampled to fine-tune the decoder. Additional priors such as image statistics and size constraints are also considered to expand and refine object boundaries. Extensive experiments1, over three CNN backbones and six WSOL baselines on the CUB-200-2011 and OpenImages datasets, indicate that our F-CAM method yields a significant improvement in CAM localization accuracy. F-CAM performance is competitive with state-of-art WSOL methods, yet it requires fewer computations during inference. Additional experiments and ablations were conducted on histology datasets with a focus on negative evidence. Results showed the benefits of our method compared to state-of-the-art methods.

Papers :
https://arxiv.org/abs/2109.07069
https://arxiv.org/abs/2201.02445

Find out more information related to our research at the LIVIA website: https://liviamtl.ca/

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]