Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Retrieve Dropped Rows Using drop_duplicates in Pandas DataFrame

  • vlogize
  • 2025-09-21
  • 0
How to Retrieve Dropped Rows Using drop_duplicates in Pandas DataFrame
How to get dropped rows when using drop_duplicates (Pandas DataFrame)?pythonpandasduplicatesdrop duplicates
  • ok logo

Скачать How to Retrieve Dropped Rows Using drop_duplicates in Pandas DataFrame бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Retrieve Dropped Rows Using drop_duplicates in Pandas DataFrame или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Retrieve Dropped Rows Using drop_duplicates in Pandas DataFrame бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Retrieve Dropped Rows Using drop_duplicates in Pandas DataFrame

Discover a simple method to identify and extract dropped duplicate rows in a Pandas DataFrame using `drop_duplicates`. Enhance your data quality analysis with this guide!
---
This video is based on the question https://stackoverflow.com/q/62761309/ asked by the user 'Code Ninja 2C4U' ( https://stackoverflow.com/u/13441667/ ) and on the answer https://stackoverflow.com/a/62761393/ provided by the user 'Chris' ( https://stackoverflow.com/u/4718350/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to get dropped rows when using drop_duplicates (Pandas DataFrame)?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Duplicates in Pandas DataFrames

When handling data, especially large datasets, maintaining data quality is crucial for accurate analysis and decision-making. One common issue is the presence of duplicate rows that can skew results if not managed properly. The pandas library in Python offers the convenient .drop_duplicates() method to remove duplicate entries from a DataFrame. However, if you need to analyze data quality, you may also want to retrieve the rows that were dropped during this process.

In this guide, we’ll walk through how to not only drop duplicates from a Pandas DataFrame but also how to identify and extract those dropped rows.

The Problem

You have a DataFrame that contains duplicate rows where all columns have identical values. While removing duplicates is essential, it can be equally important to keep track of these removed entries to ensure our data remains reliable.

Example Scenario:

Suppose you have the following dataset:

[[See Video to Reveal this Text or Code Snippet]]

After running this, rows 3 and 4 (the duplicates) will be removed, but how do we get those rows back?

The Solution: Identifying Dropped Rows

The solution involves using an additional method available in Pandas to identify duplicates before dropping them. Let’s break down the steps.

Step 1: Identify and Extract Duplicates

You can use the duplicated() method from the Pandas library, which returns a Boolean Series indicating whether each row in the DataFrame is a duplicate or not.

Code Snippet:

[[See Video to Reveal this Text or Code Snippet]]

Here, keep=False specifies that you want all instances of duplicated rows, not just the later occurrences.

Step 2: Display the Extracted Rows

To see the rows that were duplicated, simply print the duplicates DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Output:

This will display:

[[See Video to Reveal this Text or Code Snippet]]

Summary of Key Functions

drop_duplicates(keep='first'): Removes duplicate rows, keeping the first occurrence.

duplicated(keep=False): Identifies all duplicate rows in the DataFrame.

Complete Working Example

Let’s put everything together in a complete example:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By following the steps outlined in this guide, you can effectively manage duplicates in your Pandas DataFrames. Not only can you remove duplicate rows to ensure cleaner data, but you can also extract and analyze the removed entries, allowing you to maintain high data quality standards.

Practice using these methods on your datasets, and you’ll quickly gain confidence in managing duplicates within your data analysis workflow.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]