Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Solve RandomForestRegressor Predictions Mismatch Between Train and Test Data

  • vlogize
  • 2025-04-06
  • 5
How to Solve RandomForestRegressor Predictions Mismatch Between Train and Test Data
RandomForestRegressor : mismatch among Xtrain and Xtest predictrandom forest
  • ok logo

Скачать How to Solve RandomForestRegressor Predictions Mismatch Between Train and Test Data бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Solve RandomForestRegressor Predictions Mismatch Between Train and Test Data или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Solve RandomForestRegressor Predictions Mismatch Between Train and Test Data бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Solve RandomForestRegressor Predictions Mismatch Between Train and Test Data

Discover effective strategies to address prediction mismatches when using `RandomForestRegressor` on training and testing datasets.
---
This video is based on the question https://stackoverflow.com/q/76987209/ asked by the user 'Angelo' ( https://stackoverflow.com/u/22386902/ ) and on the answer https://stackoverflow.com/a/76987356/ provided by the user 'kaylei sidharth' ( https://stackoverflow.com/u/22454209/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: RandomForestRegressor : mismatch among Xtrain and Xtest predict

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Solve RandomForestRegressor Predictions Mismatch Between Train and Test Data

When working with machine learning models, it's not uncommon to encounter issues where your model performs well on training data but fails to provide meaningful predictions for unseen test data. This is often referred to as overfitting. In this guide, we'll explore a common problem faced by developers using the RandomForestRegressor, specifically the situation where the predictions for test data appear to be identical.

The Problem

You fitted a RandomForestRegressor on your training dataset (X_train and y_train), but when applying the predict method to your training and test sets, you noticed that:

y_train_pred contains a distinct value for each corresponding X_train value.

y_test_pred, on the other hand, returns the same prediction for all values in X_test.

Example Code

Here’s a snippet of the code you might be using:

[[See Video to Reveal this Text or Code Snippet]]

Understanding the Issue

This behavior suggests that the model might be overfitting to the training data — it has memorized the training set so well that it struggles to generalize to new data (X_test). Instead of predicting various outcomes for distinct values in X_test, it opts for a single output, implying a lack of variance.

Solutions to Consider

1. Max Depth Limitation

Limit the maximum depth of the trees to prevent them from becoming overly complex. You can set the max_depth parameter in the RandomForestRegressor:

[[See Video to Reveal this Text or Code Snippet]]

2. Minimum Samples Split

Implement a minimum number of samples required to split a node using the min_samples_split parameter:

[[See Video to Reveal this Text or Code Snippet]]

3. Feature Limitation

Control the number of features considered at each split to increase generalization. Use the max_features parameter:

[[See Video to Reveal this Text or Code Snippet]]

4. Reduce the Number of Estimators

While more trees generally mean better performance, too many can lead to overfitting. Experiment with a smaller number of estimators:

[[See Video to Reveal this Text or Code Snippet]]

5. Alternate Criterion

Test different criteria for evaluating the model, such as using mse (mean squared error) instead of the default squared_error:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In summary, the issue of prediction mismatches between y_train_pred and y_test_pred can be largely attributed to the model overfitting the training data. By adjusting the hyperparameters of the RandomForestRegressor, you can enhance your model's ability to generalize to unseen data, thus providing more accurate predictions for your test set. Experimenting with these adjustments can lead to a robust model that performs well across both training and testing phases.



With these suggestions, you should now have a clearer path towards diagnosing and fixing similar issues in your machine learning projects using RandomForestRegressor. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]