Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть AI Systems Engineering: From Architecture Principles to Deployment

  • Software Engineering Institute | Carnegie Mellon University
  • 2025-05-13
  • 1522
AI Systems Engineering: From Architecture Principles to Deployment
Artificial IntelligenceAI Engineering
  • ok logo

Скачать AI Systems Engineering: From Architecture Principles to Deployment бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно AI Systems Engineering: From Architecture Principles to Deployment или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку AI Systems Engineering: From Architecture Principles to Deployment бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео AI Systems Engineering: From Architecture Principles to Deployment

AI Engineering https://insights.sei.cmu.edu/artifici...

This talk was given as part of the National AI Engineering Study speaker series.

Artificial intelligence (AI) is revolutionizing many industries, such as applications ranging from driverless cars, finance, healthcare, national security, manufacturing, e-commerce, to name a few. In this talk we will address the opportunities to employ systems engineering principles starting with an end-to-end AI architecture. The talk centers on the triad of people-process-technology. We start with a short background. We discuss both traditional AI and Generative AI. We present a Responsible AI framework and a recommended AI ecosystem to help AI practitioners in transitioning from development to deployment. We conclude with common pitfalls and provide a set of recommendations

David R. Martinez is Laboratory Fellow at MIT Lincoln Laboratory. His emphasis is on artificial intelligence, high performance computing, and technical leadership.

He teaches two courses at MIT. The first course is titled: "AI Strategies and Roadmap: Systems Engineering Approach to AI Development and Deployment." The second course is titled: “AI System Architecture and LLM Applications.” He is also the coauthor of a book used in his courses titled Artificial Intelligence: A Systems Approach from Architecture Principles to Deployment.

Mr. Martinez has held many past technical leadership roles, including Group Leader of the Embedded Digital Systems Group and Division Head of the ISR Systems and Technology Division at MIT Lincoln Laboratory. He has developed and led complex prototype systems, from their inception to their final deployments. These successful prototype demonstrations served as the pathfinder for industry to later commercialize.

He has been a keynote speaker at many technical conferences. He was elected IEEE Life Fellow “for technical leadership in the development of high-performance embedded computing for real-time defense systems.” He holds three U.S. patents based on his work in signal processing for seismic applications. He received the special achievement award from ARCO Oil and Gas Research Center.

Mr. Martinez holds a BS degree from New Mexico State University, MS and EE degrees from MIT in Electrical Engineering and Oceanographic Engineering.

#aiengineering

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]