Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Detect Existence of ceci_stok in Multiple Columns Using PySpark Join

  • vlogize
  • 2025-03-26
  • 0
How to Detect Existence of ceci_stok in Multiple Columns Using PySpark Join
Detect existence of column element in multiple other columns using joinapache sparkjoinpysparkapache spark sqlself join
  • ok logo

Скачать How to Detect Existence of ceci_stok in Multiple Columns Using PySpark Join бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Detect Existence of ceci_stok in Multiple Columns Using PySpark Join или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Detect Existence of ceci_stok in Multiple Columns Using PySpark Join бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Detect Existence of ceci_stok in Multiple Columns Using PySpark Join

Learn how to effectively use joins in PySpark to detect if values from one column exist in other specified columns in a DataFrame.
---
This video is based on the question https://stackoverflow.com/q/72466398/ asked by the user 'amine jisung' ( https://stackoverflow.com/u/13305481/ ) and on the answer https://stackoverflow.com/a/72466863/ provided by the user 'Matt Andruff' ( https://stackoverflow.com/u/13535120/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Detect existence of column element in multiple other columns using join

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Detecting Existence of Column Values in PySpark DataFrame

In data analysis and big data processing, it is often essential to identify overlapping values between different columns within a DataFrame. For those using PySpark, the challenge of checking if certain values exist in multiple columns can be effectively tackled using joins. In this guide, we will explore how to detect instances of a specific column's values (ceci_stok) across two other columns (ceci_l and ceci_p) using a self-join strategy in PySpark.

Problem Overview

Imagine you have a DataFrame with three relevant columns: ceci_p, ceci_l, and ceci_stok. Your goal is to find out which values in ceci_stok are also present in both ceci_l and ceci_p. For example, if ceci_stok has a value of BPI202, you want to confirm that this value can be found in both ceci_l and ceci_p. Our objective is to create a new DataFrame that captures this information.

Input DataFrame Structure:

Here’s a visual of the input DataFrame structure:

ceci_pceci_lceci_stokSFIL401BPI202BPI202BPI202CDC111BPI202LBP347SFIL402SFIL402LBP347SFIL402LBP347Desired Output:

You want to extract rows where ceci_stok exists in both ceci_l and ceci_p. For our example above, the output should include the row for BPI202 since it's available in both columns.

Solution Breakdown

To achieve this, we will follow a systematic approach using PySpark. Below, we will break down the solution into clear steps:

Step 1: Create Sample Data

First, we need to create a sample DataFrame that mimics our problem statement. We can do this as follows:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Prepare for the Join

To make the joining process easier, we will prepare two separate DataFrames containing distinct values of ceci_p and ceci_l. We will rename these values for easier reference during the join operation.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Performing the Join

Now, we’ll join ceci_l and ceci_p on the join_key, which gives us a DataFrame containing values that exist in both columns:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Final Join to Extract Desired Data

Finally, we perform one last join to filter our original DataFrame based on the values we've confirmed exist in both ceci_l and ceci_p:

[[See Video to Reveal this Text or Code Snippet]]

Expected Output DataFrame:

After executing the above code, your output will look like this:

ceci_pceci_lceci_stokjoin_keySFIL401BPI202BPI202BPI202BPI202CDC111BPI202BPI202Conclusion

By using the self-join method in PySpark, you can effectively identify and extract values from a DataFrame that exist in multiple columns. This technique is particularly useful in data processing tasks where recognizing overlaps in datasets is crucial for further analysis.

Feel free to adapt this approach to suit your specific data needs, and make the most out of PySpark's powerful joining capabilities!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]