Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть An Infinite Sum that Will Leave You Speechless: Tackling a Putnam Problem

  • polymathematic
  • 2023-12-12
  • 2626
An Infinite Sum that Will Leave You Speechless: Tackling a Putnam Problem
putnamputnam mathematics competitionputnam competitionmath competitionmathmathsmathematicsset theorynumber theorycompetitionpsiauilnumber sensemathcountsamerican mathematics competitionmichael pennputnam examwilliam lowell putnamcompetition mathproofmathematical proofinfinite suminfinite seriessequenceinfinitytelescoping seriesconvergencehigh school mathPutnam prepmath puzzlesmath challengescalculus seriesproblem solving
  • ok logo

Скачать An Infinite Sum that Will Leave You Speechless: Tackling a Putnam Problem бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно An Infinite Sum that Will Leave You Speechless: Tackling a Putnam Problem или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку An Infinite Sum that Will Leave You Speechless: Tackling a Putnam Problem бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео An Infinite Sum that Will Leave You Speechless: Tackling a Putnam Problem

Hello and welcome to today's mathematical exploration where we demystify a seemingly complex infinite sum. As a math enthusiast, I find beauty in the challenge of understanding intricate concepts and breaking them down into comprehensible parts. Today's focus is on the sum from 1 to infinity of 6^n / (3^n+1 - 2^n+1)(3^n - 2^n), a series that at first glance appears daunting.

Subscribe: https://bit.ly/polymathematic | Enable ALL push notifications 🔔

Initially, the series resisted simplification, a common occurrence in mathematical problems. However, through persistence and analytical thinking, we discovered that this series could be transformed into a more approachable form. This breakthrough came by rewriting it as a telescoping series: the sum from 1 to infinity of 1/((3/2)^n - 1) - 1/((3/2)^n+1 - 1).

Telescoping series are interesting because they have a natural way of simplifying themselves. In this series, each term consists of two parts that effectively cancel out the adjoining terms. This characteristic simplifies the calculation significantly, leaving us with just the first term and the limit of the final term as n approaches infinity.

Upon computing these values, the sum of the series is revealed to be 2. This outcome is a testament to the elegance and simplicity that often lies beneath the surface of complex mathematical problems.

This exploration underscores the value of perseverance and analytical thinking in mathematics. Problems that seem impenetrable at first can often be simplified and solved with the right approach.

Thank you for joining me in this mathematical journey. If you find such explorations insightful, please consider subscribing for more content. Here, we delve into the fascinating world of mathematics, uncovering the beauty and simplicity hidden within complex concepts.

Until next time, keep exploring and appreciating the wonders of mathematics. Your support and curiosity are what make these explorations worthwhile.

#putnamcompetition #putnammathematics #putnam

Watch more Math Videos:
Math Minis:    • Math Mini  
Math Minutes:    • Math Minutes  
Number Sense:    • Number Sense (UIL / PSIA)  
MATHCOUNTS:    • MATHCOUNTS  

Follow Tim Ricchuiti:
TikTok:   / polymathematic  
Mathstodon: https://mathstodon.xyz/@polymathematic
Instagram:   / polymathematicnet  
Reddit:   / polymath-matic  
Facebook:   / polymathematic  

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]