Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Class 9 - Mathematics - Chapter 12 - Lecture 1 - Theorem 12.1

  • Maths academy Siddiq Sadiq 2.0
  • 2024-01-02
  • 176
Class 9 - Mathematics - Chapter 12 - Lecture 1 - Theorem 12.1
class9th maths ch 12class 9 maths ch 12theorem 12.112.1 theorem9th class theorem 12.1theorem12.112.1.1ch 12theorem 12.1.1class 9 Maths theorem 12.1
  • ok logo

Скачать Class 9 - Mathematics - Chapter 12 - Lecture 1 - Theorem 12.1 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Class 9 - Mathematics - Chapter 12 - Lecture 1 - Theorem 12.1 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Class 9 - Mathematics - Chapter 12 - Lecture 1 - Theorem 12.1 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Class 9 - Mathematics - Chapter 12 - Lecture 1 - Theorem 12.1

#theorem #maths #class9maths #class
Class 9 - Mathematics - Chapter 12 - Lecture 1 - Theorem 1 Peshawar Model school Class: 9th |
Mathematics (FBISE) |
Lecture # |
Unit #12 |
Theorem #12.1.1 |
Mathematics Science group |
Any point on the right bisector of a line segment is equidistant from its end points |
Dear viewers, it is my pleasure to deliver you mathematics tutorials in simple and native language so that you can get it easily |
#MathsMadeEasy is a channel where you can improve your #Mathematics |
This is an education channel where maths made easy will try to solve your problems |
Students may send the problems they are facing through comments |
Introduction
In this unit, we will prove theorems and their converses, if
any, about right bisector of a line segment and bisector of an angle.
But before that it will be useful to recall the following definitions:
Right Bisector of a Line Segment
A line is called a right bisector of a line segment if it is perpendicular
to the line segment and passes through its midpoint.
Bisector of an Angle
A ray BP is called the bisector of ∠ABC, if P is a point in the
interior of the angle and m∠ABP = m∠PBC.
Theorem 12.1.1
Any point on the right bisector of a line
segment is equidistant from its end points.
Given
A line LM intersects the line segment AB at
the point C. Such that LM is perpendicular to AB and AC ≅ BC. P is a point on LM.
To Prove
PA ≅ PB
Construction
Join P to the points A and B.
Proof:
In ∆ACP ←→ ∆BCP
AC ≅ BC (given)
∠ACP ≅ ∠BCP (given PC is perpendicular to AB, so that each ∠ at
C = 90^0)

PC ≅ PC (Common
∆ACP ≅ ∆BCP (S.A.S. postulate)
Hence PA ≅ PB (corresponding sides of congruent triangles)
In this unit we stated and will proved the following theorems:
• Any point on the right bisector of a line segment is equidistant
from its end points.
• Any point equidistant from the end points of a line segment is on
the right bisector of it.
• The right bisectors of the sides of a triangle are concurrent.
• Any point on the bisector of an angle is equidistant from its arms.
• Any point inside an angle, equidistant from its arms, is on the bisector of it.
The bisectors of the angles of a triangle are concurrent.
• Right bisection of a line segment means to draw a perpendicular
at the mid point of line segment.
• Bisection of an angle means to draw a ray to divide the given
angle into two equal parts.


#theorem #class9 #math #maths #theorem12.1

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]