Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Replace Items in a Vector Using Dplyr in R

  • vlogize
  • 2025-09-17
  • 0
How to Replace Items in a Vector Using Dplyr in R
R Dplyr: How to replace items in a vector matching items in a list conditionallydplyrmatch
  • ok logo

Скачать How to Replace Items in a Vector Using Dplyr in R бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Replace Items in a Vector Using Dplyr in R или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Replace Items in a Vector Using Dplyr in R бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Replace Items in a Vector Using Dplyr in R

Discover how to effectively use `dplyr` to replace items in a vector with NA based on conditional matching against a list in R. Follow along for practical implementation and simplified explanation!
---
This video is based on the question https://stackoverflow.com/q/62223833/ asked by the user 'user3874160' ( https://stackoverflow.com/u/3874160/ ) and on the answer https://stackoverflow.com/a/62225241/ provided by the user 'akrun' ( https://stackoverflow.com/u/3732271/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: R Dplyr: How to replace items in a vector matching items in a list, conditionally

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Introduction

In data analysis, particularly when working with grouped datasets, identifying and managing outliers is crucial for ensuring the integrity of insights generated. In this guide, we will explore how to use dplyr, a powerful R package, to replace items in a vector based on conditions tied to groups of data. The focus will be on outlier handling based on the Interquartile Range (IQR) method.

The Problem

You may find yourself needing to clean a dataset by removing outliers, especially when dealing with several groups (like Species in the Iris dataset). When outliers are detected, you’ll want to replace those values conditionally:

If there are more than two outliers, you replace extreme values with NA.

If there are two or fewer outliers, you replace just the outlier values with NA.

Utilizing dplyr, our goal is to implement a straightforward solution that encapsulates these steps, ensuring clarity and efficacy.

Solution Overview

Let's break down the process into manageable parts:

Step 1: Identify Outliers and Extremes

We will first create a base computation to identify outliers and extremes using the IQR method.

[[See Video to Reveal this Text or Code Snippet]]

This code snippet groups the Iris dataset by Species and identifies whether each Sepal Length is an outlier or extreme.

Step 2: Combine with Nested Data

Next, we will combine our outlier data with our main nested dataset, aligning our information.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Conditional Replacement of Values

The final and most critical step involves replacing values conditionally based on the number of outliers. Here's how you can achieve this using dplyr and purrr.

The Code

[[See Video to Reveal this Text or Code Snippet]]

Breakdown of the Code

Row-wise Operation: We utilize rowwise() to operate on each group individually.

Mapping and Replacing: The use of map2() allows us to apply the replacement conditionally:

If out_num2 is TRUE, replace values with extremes.

Otherwise, replace values with outliers.

Replacement Logic: replace() is effective in substituting matched values with NA.

Conclusion

By following the outlined steps, you can efficiently manage outliers in your dataset using the dplyr and purrr libraries in R. This method not only cleans your data but also maintains the integrity of your analyses by handling outliers in a contextually relevant manner. If you run into any issues or have further questions, don't hesitate to reach out!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]