Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Use dplyr's across for Dynamic t.test and varTest Calculations

  • vlogize
  • 2025-09-14
  • 1
How to Use dplyr's across for Dynamic t.test and varTest Calculations
R dplyr across: Dynamically specifying arguments to functions t.test and varTestdynamicdplyracross
  • ok logo

Скачать How to Use dplyr's across for Dynamic t.test and varTest Calculations бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Use dplyr's across for Dynamic t.test and varTest Calculations или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Use dplyr's across for Dynamic t.test and varTest Calculations бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Use dplyr's across for Dynamic t.test and varTest Calculations

Learn how to dynamically specify arguments for `t.test` and `varTest` functions in R using `dplyr`'s `across` strategy. Boost your data handling and analytical efficiency!
---
This video is based on the question https://stackoverflow.com/q/67421950/ asked by the user 'Paul' ( https://stackoverflow.com/u/2111787/ ) and on the answer https://stackoverflow.com/a/67424002/ provided by the user 'Dan Chaltiel' ( https://stackoverflow.com/u/3888000/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: R dplyr across: Dynamically specifying arguments to functions t.test and varTest

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering Dynamic t.test and varTest Calculations with dplyr

When working with data in R, one might often face the challenge of performing statistical tests across multiple variables while maintaining flexibility in parameter specification. An effective solution exists using the dplyr package and its across() function. This guide will delve into how to dynamically specify arguments to the t.test and varTest functions using dplyr, specifically in the context of a dataset.

The Problem

You may find yourself needing to derive p-values for multiple variables using the t.test for means and varTest for standard deviations. The catch? The parameter values for these tests are not fixed—they vary depending on the dataset.

Imagine this situation:

You have a dataset defined by columns (e.g., mpg, cyl, disp, hp) and wish to run tests on these.

You also have a secondary dataset where you store the mean (mu) and standard deviation (sigma.squared) required for your tests.

The challenge arises when you need to ensure that the correct mu and sigma.squared values are fetched for each variable dynamically.

A Classic Solution

Initially, one might consider hard-coding these values. However, that approach falls short when the variables change or if new variables are added. Instead, creating a dynamic framework minimizes errors and enhances flexibility.

Basic Structure Using dplyr

Here's a simple way to structure the dynamic calculations using the dplyr package:

[[See Video to Reveal this Text or Code Snippet]]

The Improved Dynamic Version

However, for proper dynamic handling, we can encapsulate the logic into more customizable functions. By utilizing cur_column() or improved lambda expressions, we can make things cleaner. Here’s how:

Define a Function to Retrieve mu and sigma.squared:

[[See Video to Reveal this Text or Code Snippet]]

Run the Summarization with across:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

The above method ensures that the appropriate mu and sigma.squared values are dynamically inserted for each variable in your dataset. By using cur_column() for clear naming and organized functions, you can efficiently execute statistical tests without succumbing to potential errors associated with static coding practices.

In summary, navigating the realm of dynamic statistical analysis in R is made simpler with the combination of dplyr and careful design of functions tailored to your dataset. This allows for cleaner, more maintainable code while ensuring accuracy in your calculations.

Feel free to take these insights into your own analysis and watch your efficiency soar!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]