Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Progress and Prospects of Lattice Supersymmetry by David Schaich

  • International Centre for Theoretical Sciences
  • 2021-02-10
  • 1018
Progress and Prospects of Lattice Supersymmetry by David Schaich
  • ok logo

Скачать Progress and Prospects of Lattice Supersymmetry by David Schaich бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Progress and Prospects of Lattice Supersymmetry by David Schaich или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Progress and Prospects of Lattice Supersymmetry by David Schaich бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Progress and Prospects of Lattice Supersymmetry by David Schaich

PROGRAM

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography (ONLINE)

ORGANIZERS: David Berenstein (UCSB), Simon Catterall (Syracuse University), Masanori Hanada (University of Surrey), Anosh Joseph (IISER, Mohali), Jun Nishimura (KEK Japan), David Schaich (University of Liverpool) and Toby Wiseman (Imperial College London)

DATE: 18 January 2021 to 22 January 2021

VENUE: Online

Due to the ongoing COVID-19 pandemic, the original program has been postponed. This mini program is a precursor to the original program.
The goal of the second edition of the program ‘Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography’ is to bring together theorists working in areas of lattice field theory, string theory and quantum gravity, to discuss the state of art nonperturbative methods and numerical approaches to tackle current and relevant research problems.
The program has strong pedagogical component as it also aims to build a growing community of theoretical scientists in India, to engage more in nonperturbative field theories interconnecting string theory, supersymmetric/superconformal field theories, quantum black holes, gravity, and holography.

This program can be broadly divided into the following five topics.

Lattice Supersymmetric Field Theories

Matrix Models, Quantum Black Holes, and Gravity

Large N

Formal Developments on the Lattice

Quantum Information and Quantum Computation for Quantum Gravity/String Theory, Holographic Renormalization

As an invitation to the main program, this mini program will include a series of research talks on the following topics and accompanying discussion sessions.

Chiral Lattice Fermions from Staggered Fields by Simon Catterall (Syracuse University, USA)
Asymptotic Freedom with Qubits by Shailesh Chandrasekharan (Duke University, USA)
The Weak Cosmic Censorship Conjecture: Current Status by Pau Figueras (Queen Mary University of London, UK)
Tensor Network Methods in Four Dimensional Field Theory by Daisuke Kadoh (National Center for Theoretical Sciences, Taiwan)
Lattice Quantum Gravity and Asymptotic Safety by Jack Laiho (Syracuse University, USA)
Complex Langevin Simulations of the Matrix Model for Superstrings by Jun Nishimura (KEK, Japan)
Progress and Prospects of Lattice Supersymmetry by David Schaich (University of Liverpool, UK)
Lattice Holographic Cosmology by Kostas Skenderis (University of Southampton, UK)
Quantum Gravity in the Lab by Brian Swingle (University of Maryland, USA)
Target Space Entanglement and Bekenstein Hawking Entropy by Sandip Trivedi (TIFR, India)
Semi-Abelian Gauge Theories, Non-invertible Symmetry, and String Tensions Beyond N-ality by Mithat Unsal (North Carolina State University, USA)

CONTACT US: [email protected]

PROGRAM LINK: https://www.icts.res.in/program/numst...

Table of Contents (powered by https://videoken.com)
0:02:34 Overview and plan
0:04:39 Motivations
0:06:51 Background: Lattice field theory in a nutshell
0:10:13 Numerical lattice field theory calculations
0:11:48 Supersymmetry must be broken on the lattice
0:14:28 Checkpoint Significant progress currently being made in lattice studies of supersymmetric QFTs
0:17:46 Background: Lattice field theory in a nutshell Formally (0) = = / DD O
0:21:35 Selected recent progress fine-tuning gluino mass Scalar,
0:25:36 Selected recent progress fine-tuning gluino mass Measure of supersymmetry breaking from Ward identities vanishes in chiral continuum limit,
0:27:37 Selected recent progress fine-tuning gluino mass Alternate 'twisted-mass' action provides extra 'twist angle' parameter -tune this to improve approach to continuum limit
0:29:19 Recent progress with overlap N = 1 super-Yang-Mills
0:31:38 Reduce dimensions: Supersymmetric quantum mechanics
0:33:37 Testing holography with lattice super-Yang-Mills QM Predict corrections to SUGRA result through large-/ continuum extrapolations
0:35:45 Recent progress: Supersymmetric mass deformation
0:38:33 Maximize symmetries: Lattice N = 4 super-Yang-Mills
0:40:37 N = 4 SYM in a nutshell
0:42:00 Twisting N = 4 SYM
0:45:55 Completing the twist
0:47:41 Lattice N = 4 SYM
0:49:27 Five links in four dimensions - At lattice
0:50:52 Formal formulation features
0:52:34 Two deformations stabilize lattice calculations
0:55:07 Public code for lattice N = 4 SYM
0:57:18 2d thermodynamics on (L X 3) torus
0:59:00 Spatial confinement transition signals
1:00:27 Check holographic black hole energies
1:04:24 2d thermodynamics on (LX ) torus
1:07:28 Static potential V(r) for 4d N = 4 SYM
1:10:05 Fermion bilinear anomalous dimension
1:12:25 Checkpoint
1:15:34 Future frontier: Supersymmetric QCD
1:18:10 Recap: An exciting time for lattice supersymmetry
1:24:18 Konishi operator scaling dimension Lattice scalars 4(n) from polar decomposition Ua(n) = eva(n) Ua(n)
1:27:21 Konishi operator scaling dimension Lattice scalars (n) from polar decomposition Ua(n) = eva(n) Ua(n)

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]