Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Randomly Select Non-Unique Maximum Indices in a NumPy Array

  • vlogize
  • 2025-04-15
  • 0
Efficiently Randomly Select Non-Unique Maximum Indices in a NumPy Array
Randomly select argmax of non-unique maximumpythonarraysnumpyrandom
  • ok logo

Скачать Efficiently Randomly Select Non-Unique Maximum Indices in a NumPy Array бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Randomly Select Non-Unique Maximum Indices in a NumPy Array или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Randomly Select Non-Unique Maximum Indices in a NumPy Array бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Randomly Select Non-Unique Maximum Indices in a NumPy Array

Discover how to use NumPy to `randomly select` column indices of maximum values in a 2D array, even with non-unique maximums.
---
This video is based on the question https://stackoverflow.com/q/75090483/ asked by the user 'cottontail' ( https://stackoverflow.com/u/19123103/ ) and on the answer https://stackoverflow.com/a/75091413/ provided by the user 'cottontail' ( https://stackoverflow.com/u/19123103/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Randomly select argmax of non-unique maximum

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Randomly Select Non-Unique Maximum Indices in a NumPy Array

When working with numerical data in Python using NumPy, you may come across a scenario where you're trying to find the indices of maximum values in a 2D array. But what happens when there are non-unique maximums within your rows? In such cases, you don’t want the first occurrence of the maximum but rather a random selection among the index positions of all maximum values in that row.

This guide will explore an efficient way to handle this situation using NumPy's powerful features while offering improved performance over traditional list comprehension methods.

The Problem Statement

Consider the following 2D NumPy array:

[[See Video to Reveal this Text or Code Snippet]]

Here, for some rows, multiple columns have the maximum value. For example, in the second row [1, 1, 0], both column indices 0 and 1 have the value 1. If we apply the standard method arr.argmax(1), it will give us the first occurrence of the maximum, which is not what we need.

We want to obtain an output that might look like this:

array([1, 0, 2, 0])

or array([1, 1, 2, 0])

Each index choice for rows with non-unique maximums should be random, ensuring equal probability for each of the indices.

The Solution

To achieve this random selection among maximum values in an efficient way, follow these steps:

Step 1: Create a Boolean Mask

First, we need to create a boolean array that flags positions in the array where the maximums reside:

[[See Video to Reveal this Text or Code Snippet]]

This will yield a boolean array of the same shape as arr, wherein each position indicates whether it's a maximum value per its respective row.

Step 2: Generate Random Values

Next, we will create an auxiliary random array that only retains random values where the original array has its maximums flagged:

[[See Video to Reveal this Text or Code Snippet]]

In this step, all non-maximum indices will be zeroed out, while maximum indices will be filled with random numbers.

Step 3: Get Final Indices

Now that we have our prepared array with random values only at maximum positions, we can simply use argmax on this array to retrieve a random index for each row:

[[See Video to Reveal this Text or Code Snippet]]

Full Code Example

Here’s the complete code for clarity:

[[See Video to Reveal this Text or Code Snippet]]

Performance Benefits

Using the above method is significantly faster than the list comprehension method as evidenced by testing. For a data shape of (507,563, 12), while the loop-over method might take up to 11 seconds, this optimized approach completes in approximately 172 milliseconds, making it about 63 times faster.

Conclusion

Leveraging NumPy’s capabilities not only simplifies your code but also optimizes performance, especially when working with larger datasets. Now you can effectively and efficiently select maximum indices randomly while ensuring that your solutions remain scalable.

Dive into the details of NumPy, and see how it can transform your data handling practices!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]