Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть What's So Hard About Big Visual Data?

  • UW Video
  • 2014-01-13
  • 1114
What's So Hard About Big Visual Data?
University of Washingtoncomputer science and engineeringcloud computingphotographygraphicsdata storagevideo storageUWAlexei EfrosCarnegie Mellon University (College/University)Ciscovisual datadigital dark matterEngineering and Computer ScienceBig Visual Datavisual data miningimage retrievalvisual matchingData (Website Category)
  • ok logo

Скачать What's So Hard About Big Visual Data? бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно What's So Hard About Big Visual Data? или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку What's So Hard About Big Visual Data? бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео What's So Hard About Big Visual Data?

With an estimated 3.5 trillion photographs in the world today, Cisco estimates that in the next few years, visual data (photos and video) will acount for over 85% of total internet traffic. Surprisingly, however, we currently lack effective computational methods for making sense of this mass of visual data, referred to as the Internet's "digital dark matter." In this talk, Alexei Efros of Carnegie Mellon University will discuss some of the unique challenges that make Big Visual Data difficult to interpret compared to other types of content. Efros also presents some recent work done by Carnegie Mellon University that aims to address this challenge in the context of visual matching, image retrieval, and visual data mining.

Alexei Efros, Carnegie Mellon University

1/24/2013

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]