Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Create a New Column in Pandas DataFrame by Extracting Macros from Strings Efficiently

  • vlogize
  • 2025-10-08
  • 0
How to Create a New Column in Pandas DataFrame by Extracting Macros from Strings Efficiently
Create a column removing unwanted parts of strings based on conditionpythonpandasloopssplit
  • ok logo

Скачать How to Create a New Column in Pandas DataFrame by Extracting Macros from Strings Efficiently бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Create a New Column in Pandas DataFrame by Extracting Macros from Strings Efficiently или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Create a New Column in Pandas DataFrame by Extracting Macros from Strings Efficiently бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Create a New Column in Pandas DataFrame by Extracting Macros from Strings Efficiently

Learn how to create a new column in a Pandas DataFrame by extracting macro genres from a string column using Python. This guide includes tips and comparisons on different methods for improved performance.
---
This video is based on the question https://stackoverflow.com/q/64529174/ asked by the user 'Marcus Trugilho' ( https://stackoverflow.com/u/14379844/ ) and on the answer https://stackoverflow.com/a/64529666/ provided by the user 'Grayrigel' ( https://stackoverflow.com/u/5604562/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Create a column removing unwanted parts of strings based on condition

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Create a New Column in Pandas DataFrame by Extracting Macros from Strings Efficiently

As a beginner in Python, you might find yourself facing various challenges when working with data, particularly when using libraries like Pandas. One common task is to process data within a DataFrame to extract specific portions of a string based on certain conditions. In this guide, we will tackle a scenario where we want to create a new column in a DataFrame containing only the "macro genres" from a column filled with genres.

Problem Overview

Let’s start by defining the problem: You have a DataFrame with a column named Genres, which includes strings that may contain multiple genres separated by ;. Your goal is to create a new column called macro_genres that captures the main genre from this list.

Example DataFrame

Here is a sample DataFrame that we will work with:

[[See Video to Reveal this Text or Code Snippet]]

The output of this DataFrame looks like this:

GenresLast UpdatedFinanceMarch 10, 2018ArcadeMay 24, 2018BusinessApril 11, 2018PhotographyNovember 6, 2014Entertainment;Brain GamesMarch 9, 2018MedicalMay 17, 2018ToolsJune 3, 2016Casual;Brain GamesApril 10, 2016MedicalJuly 16, 2018EntertainmentMay 17, 2017The Solution

To achieve our goal of creating the macro_genres column, we can make use of the map() function and a lambda expression in Pandas.

Step-by-Step Breakdown

Utilize the map() function: This function allows us to apply a function to each element in the Series; in this case, each genre string.

Define the lambda function: The lambda function will split the genre strings by the ; delimiter and select the first part as the macro genre.

Assign the result to a new column: Finally, we will assign the output of the mapping process to the new column called macro_genres.

Here is how you can implement this:

[[See Video to Reveal this Text or Code Snippet]]

Output

After executing the above code, your DataFrame will look like this:

[[See Video to Reveal this Text or Code Snippet]]

Performance Comparison

When working with large DataFrames, it’s crucial to be aware of the performance of various methods. Here's a brief comparison of the runtime for different methods for a DataFrame of varying sizes:

Using apply() method: Slightly slower due to the overhead of function calls.

Using str.split() method: The slowest option when extracting values directly.

Using map() method: Among the fastest and most efficient way to perform this operation.

Timing Results

When executed with 1,000 entries:

apply(): 535 µs

str.split(): 1.36 ms

map(): 527 µs

This performance comparison makes the map() approach a preferred choice for large datasets.

Conclusion

Creating a new column based on specific conditions in string data can be efficiently handled in Pandas using the map() function combined with a lambda expression. This method allows you to streamline your data processing tasks while ensuring optimal performance. If you're just starting with Pandas, practicing these techniques will give you a solid foundation in data manipulation.

If you have any questions or would like to see further examples, feel free to ask in the comments!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]