Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Perturbation confusion in forward automatic differentiation of higher-order functions (ICFP 2020)

  • ACM SIGPLAN
  • 2020-12-08
  • 371
Perturbation confusion in forward automatic differentiation of higher-order functions (ICFP 2020)
  • ok logo

Скачать Perturbation confusion in forward automatic differentiation of higher-order functions (ICFP 2020) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Perturbation confusion in forward automatic differentiation of higher-order functions (ICFP 2020) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Perturbation confusion in forward automatic differentiation of higher-order functions (ICFP 2020) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Perturbation confusion in forward automatic differentiation of higher-order functions (ICFP 2020)

More info about this talk: https://icfp20.sigplan.org/details/ic...

Authors:
Oleksandr Manzyuk
Barak A. Pearlmutter, Maynooth University (presenting)
Alexey Radul
David Rush
Jeffrey Mark Siskind, School of Electrical and Computer Engineering, Purdue University

Abstract:
Automatic differentiation (AD) is a technique for augmenting computer programs to compute derivatives. The essence of AD in its forward accumulation mode is to attach perturbations to each number, and propagate these through the computation by overloading the arithmetic operators. When derivatives are nested, the distinct derivative calculations, and their associated perturbations, must be distinguished. This is typically accomplished by creating a unique tag for each derivative calculation and tagging the perturbations. We exhibit a subtle bug, present in fielded implementations which support derivatives of higher-order functions, in which perturbations are confused despite the tagging machinery, leading to incorrect results. The essence of the bug is as follows: a unique tag is needed for each derivative calculation, but in existing implementations unique tags are created when taking the derivative of a function at a point. When taking derivatives of higher-order functions, these need not correspond! We exhibit a simple example: a higher-order function f whose derivative at a point x, namely f′(x), is itself a function which calculates a derivative. This situation arises naturally when taking derivatives of curried functions. Two potential solutions are presented, and their deficiencies discussed. One uses eta expansion to delay the creation of fresh tags in order to put them into one-to-one correspondence with derivative calculations. The other wraps outputs of derivative operators with tag substitution machinery. Both solutions seem very difficult to implement without violating the desirable complexity guarantees of forward AD.

This is an official ICFP 2020 talk video edited from an author-submitted video. Video captions supported by Jane Street. On a desktop browser, you can view captions without overlapping the video by clicking the three dots to the right of “Save” and clicking “Open transcript”.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]