Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding the Recurrence: Solving T(n) = 7T(n/7) + n with Substitution

  • vlogize
  • 2025-08-30
  • 4
Understanding the Recurrence: Solving T(n) = 7T(n/7) +  n with Substitution
Solve Recurrence for T(n) = 7T(n/7) + nrecurrencemaster theorem
  • ok logo

Скачать Understanding the Recurrence: Solving T(n) = 7T(n/7) + n with Substitution бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding the Recurrence: Solving T(n) = 7T(n/7) + n with Substitution или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding the Recurrence: Solving T(n) = 7T(n/7) + n with Substitution бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding the Recurrence: Solving T(n) = 7T(n/7) + n with Substitution

In this guide, we dive into solving the recurrence relation `T(n) = 7T(n/7) + n` through substitution. We clarify the steps and resolve common misconceptions for a clearer understanding of complexity analysis.
---
This video is based on the question https://stackoverflow.com/q/63947037/ asked by the user 'snowneji' ( https://stackoverflow.com/u/4757432/ ) and on the answer https://stackoverflow.com/a/64405029/ provided by the user 'SomeWittyUsername' ( https://stackoverflow.com/u/1756636/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Solve Recurrence for T(n) = 7T(n/7) + n

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Recurrence: Solving T(n) = 7T(n/7) + n with Substitution

Recurrence relations are a fundamental concept in computer science, particularly in the analysis of algorithms. Today, we tackle the recurrence T(n) = 7T(n/7) + n. While the Master Theorem intuitively leads us to the conclusion that this recurrence evaluates to O(n log 7 n), the challenge arises when attempting to solve it using substitution.

Let’s break down this recurrence step by step and clarify where common misunderstandings may occur.

The Problem

The recurrence is given as:

[[See Video to Reveal this Text or Code Snippet]]

The objective is to solve this using substitution. We want a clear line of reasoning so we can arrive at the correct time complexity.

Initial Approach

In the initial steps using substitution:

At level i, we can express the recurrence as:

[[See Video to Reveal this Text or Code Snippet]]

If we set i = log_7 n, the expression simplifies significantly:

[[See Video to Reveal this Text or Code Snippet]]

Here, we know from logarithmic properties that:

[[See Video to Reveal this Text or Code Snippet]]

Thus, the formula could be rewritten as:

[[See Video to Reveal this Text or Code Snippet]]

This is where the misunderstanding occurs, as the evaluated complexity appears to suggest O(n^2).

Breakdown of the Solution

To clarify this, we must revisit how each term contributes to the overall complexity. Let’s analyze the steps more closely:

Step 1: Recursive Expansion

We continue expanding the recurrence:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Stopping Condition

The recursion stops when:

[[See Video to Reveal this Text or Code Snippet]]

Hence, substituting this back gives us:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Final Evaluation

The constant T(1) can be treated as a constant factor, leading us to our final step:

[[See Video to Reveal this Text or Code Snippet]]

This simplifies to:

[[See Video to Reveal this Text or Code Snippet]]

The factor log_7(n) is still linear in terms of n. Thus suggesting an effective time complexity of O(n log n) rather than O(n^2).

Conclusion

In conclusion, while it may seem initially intuitive to jump to O(n^2) with the summation appearing in the earlier steps, a thorough understanding of recursive depth and the contribution of each term is critical. By using the substitution method carefully and keeping track of our expansion, we correctly find that T(n) resolves to O(n log n).

Understanding the nuances of the substitution method is essential for anyone diving deep into algorithm complexity analysis. Whether you're a student or a seasoned developer, mastering these methods will aid in developing efficient algorithms with confidence.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]