Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Sharing Large Lists of Lists in Python's multiprocessing.Pool

  • vlogize
  • 2025-05-26
  • 0
Sharing Large Lists of Lists in Python's multiprocessing.Pool
multiprocessing.Pool sharing large lists of lists read-only in memory across child processpythonpython 3.xpython multiprocessingshared memoryragged
  • ok logo

Скачать Sharing Large Lists of Lists in Python's multiprocessing.Pool бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Sharing Large Lists of Lists in Python's multiprocessing.Pool или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Sharing Large Lists of Lists in Python's multiprocessing.Pool бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Sharing Large Lists of Lists in Python's multiprocessing.Pool

Discover how to effectively share large, read-only lists of lists across child processes in Python’s `multiprocessing.Pool` using `mp.Manager`. Unlock the potential of parallel processing today!
---
This video is based on the question https://stackoverflow.com/q/70455285/ asked by the user 'Patrick Nasser' ( https://stackoverflow.com/u/13919330/ ) and on the answer https://stackoverflow.com/a/70456326/ provided by the user 'Oli' ( https://stackoverflow.com/u/6744133/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: multiprocessing.Pool sharing large lists of lists read-only in memory across child process

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Sharing Large Lists of Lists in Python's multiprocessing.Pool: A Comprehensive Guide

When building applications that require parallel processing in Python, the multiprocessing module becomes an indispensable tool. However, one recurring challenge developers face is efficiently sharing large lists of lists across multiple child processes. If you’ve ever struggled with this issue, you’re not alone! In this post, we’ll tackle how to share a large list of irregular lists (commonly known as ragged lists) with child processes when using multiprocessing.Pool. Let's dive deep into the solution.

The Problem: Accessing Large Lists of Lists across Child Processes

Imagine having a large list of lists where each sublist contains different numbers of elements (for example, [[1, 2], [1, 2, 3]]). You need to access this data within multiple child processes to perform CPU-intensive computations. The challenge arises from the fact that Python’s list sharing approaches (like mp.Array) do not support irregular lists directly. Moreover, solutions using mp.Process may not be suitable in your case if you are using Pool for efficient parallel computation.

Example Scenario

Consider this practical scenario where you have a function that computes the mean of values contained in certain sublists based on given indices. You might run into errors when attempting to use global variables, especially as the data scales with multiple processes.

[[See Video to Reveal this Text or Code Snippet]]

The Solution: Using mp.Manager for Effective Memory Sharing

1. Introducing mp.Manager

To solve the issue of sharing a large list of lists across processes, mp.Manager provides a convenient way to create proxy objects for shared memory. By creating a managed list, you can ensure that each child process has read access to the same data in memory without duplicating it.

2. Step-by-Step Implementation

Here’s how to properly implement this using mp.Manager:

Create a manager instance.

Define a managed list and populate it with your irregular lists.

Use this managed list within the child processes.

Here is the complete updated code:

[[See Video to Reveal this Text or Code Snippet]]

3. Key Considerations

Proxy Lists: When creating proxy lists, consider whether each sublist is large, as transferring large objects can slow down computation (O(n) complexity). If each element is needed, then using a proxy may provide an advantage.

Efficiency: Always test the performance as it may vary based on the size of your data and the operations you're performing.

Conclusion

By leveraging mp.Manager, you can effectively share your large lists of lists with child processes, enabling efficient parallel computing. This approach allows you to maintain data integrity and optimize performance without the overhead of duplicating large datasets. Don't hesitate to implement this solution in your projects, and enjoy the benefits of Python's powerful multiprocessing capabilities!

With these insights, you’re now equipped to tackle the challenge of sharing large lists across child processes with multiprocessing.Pool. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]