Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How Can Gradient Descent Optimize Machine Learning Algorithms? - Emerging Tech Insider

  • Emerging Tech Insider
  • 2025-09-13
  • 1
How Can Gradient Descent Optimize Machine Learning Algorithms? - Emerging Tech Insider
A IA I TrainingArtificial IntelligenceData ScienceDeep LearningEmGradient DescentM L AlgorithmsMachine LearningNeural NetworksTech Explained
  • ok logo

Скачать How Can Gradient Descent Optimize Machine Learning Algorithms? - Emerging Tech Insider бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How Can Gradient Descent Optimize Machine Learning Algorithms? - Emerging Tech Insider или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How Can Gradient Descent Optimize Machine Learning Algorithms? - Emerging Tech Insider бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How Can Gradient Descent Optimize Machine Learning Algorithms? - Emerging Tech Insider

How Can Gradient Descent Optimize Machine Learning Algorithms? Have you ever wondered how machines learn from data and improve their predictions? In this informative video, we'll explain the core concept behind many modern machine learning algorithms: gradient descent. We'll start by describing how models adjust their settings to minimize errors and improve accuracy. You'll learn about the role of the cost function, which measures how far off a model’s predictions are from actual data, and how gradient descent helps optimize this score by making small, calculated adjustments.

We’ll also cover how the size of these adjustments, known as the learning rate, impacts the speed and stability of learning. Different approaches to applying gradient descent—such as batch, stochastic, and mini-batch—are explained to show how they handle data differently during training. Additionally, you'll discover how complex models like neural networks utilize backpropagation alongside gradient descent to fine-tune each layer for better performance.

The video also explores advanced techniques like momentum, AdaGrad, RMSProp, and Adam, which help models learn more efficiently by adapting the learning process based on data and past steps. Understanding these methods is key to grasping how artificial intelligence systems recognize images, understand language, and perform tasks like autonomous driving.

Join us to see how gradient descent is fundamental to the development of smarter, faster, and more capable AI systems. Don’t forget to subscribe for more insights on emerging technologies and computing!

⬇️ Subscribe to our channel for more valuable insights.

🔗Subscribe: https://www.youtube.com/@EmergingTech...

#MachineLearning #ArtificialIntelligence #GradientDescent #NeuralNetworks #DeepLearning #AI #TechExplained #DataScience #MLAlgorithms #AITraining #EmergingTech #TechEducation #AIResearch #DataAnalysis #Computing

About Us: Welcome to Emerging Tech Insider, your source for the latest in general computing and emerging technologies. Our channel is dedicated to keeping you informed about the fast-paced world of tech innovation, from groundbreaking software developments to cutting-edge hardware releases.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]