Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Module 1.2: Histogram Plotting | Solved Numerical Example | Digital Image Processing

  • Electronics By Ajay Sir
  • 2025-09-16
  • 965
Module 1.2: Histogram Plotting | Solved Numerical Example | Digital Image Processing
#histogram#histogram equalization#histogram matching#histogram stretching#histogram specification#image enhancement#image restoration#image segmentation#image compression
  • ok logo

Скачать Module 1.2: Histogram Plotting | Solved Numerical Example | Digital Image Processing бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Module 1.2: Histogram Plotting | Solved Numerical Example | Digital Image Processing или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Module 1.2: Histogram Plotting | Solved Numerical Example | Digital Image Processing бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Module 1.2: Histogram Plotting | Solved Numerical Example | Digital Image Processing

​​Histogram plotting in digital image processing is a fundamental technique used to analyze and manipulate the distribution of pixel intensities within an image​. ​It provides a visual summary of an image's appearance, indicating the frequency of each intensity level present. ​This graphical representation is crucial for understanding an image's contrast, brightness, and overall tonal characteristics, which is vital for image enhancement and analysis.

Understanding Image Histograms

​An image histogram is a graphical representation that illustrates the frequency or occurrence of different intensity levels or color values within a digital image. ​The horizontal axis (x-axis) of the histogram typically represents the brightness or tonal values (pixel intensity levels), which can range from 0 to 255 for an 8-bit grayscale image, while the vertical axis (y-axis) plots the number of pixels corresponding to each specific brightness or tonal value. ​For color images, separate histograms can be generated for each color channel. ​By counting the number of pixels at each intensity value and plotting these counts, a histogram provides a global description of the image's appearance.

Methods for Plotting Histograms

​There are two primary methods for plotting a histogram of an image:

Method 1 (Un-Normalised Histogram): ​In this method, the x-axis displays grey levels or intensity values, and the y-axis shows the number of pixels corresponding to each grey level. This directly visualizes how many pixels possess a particular intensity.

Method 2 (Normalised Histogram): ​Here, the x-axis still represents the grey level, but the y-axis indicates the probability of occurrence of that grey level. This method involves normalizing the pixel counts to reflect their relative frequencies.

​Algorithms in digital editors allow users to dynamically adjust pixel brightness values and observe the immediate changes in the displayed histogram. ​Libraries like OpenCV in Python can be used to calculate and plot histograms programmatically.

Applications of Histograms in Digital Image Processing

​Histograms are powerful tools in digital image processing, offering various applications for image enhancement and analysis:

Image Analysis: ​Histograms provide insights into an image's characteristics, such as overall brightness and contrast. ​A histogram with most values on the left indicates a dark image, while a spread-out histogram suggests good contrast.

Brightness and Contrast Adjustment: ​Histograms are widely used for adjusting the brightness and contrast of an image. ​They can help identify if an image is correctly exposed and guide changes to achieve a better visual result.

Histogram Equalization: ​This technique aims to enhance image contrast by redistributing pixel intensities more uniformly across the entire available range, making details more visible. ​It is particularly effective for images with low contrast where pixel intensities are clustered in a narrow range.

Thresholding: ​Histograms are used in thresholding, a technique often employed in computer vision to segment images by separating objects from their background based on intensity values. ​Peaks and valleys in the histogram can help locate clusters for segmentation.

Feature Extraction: ​Image histograms are integral to feature extraction in machine vision systems, aiding in pattern recognition and image classification. ​Methods like Local Binary Patterns (LBP) and Gray-Level Co-occurrence Matrix (GLCM) utilize histogram information to encode texture and analyze pixel relationships.

You may refer the following books to practice more numerical questions:

1. R.C.Gonzalez and R.E.Woods, “Digital Image Processing”, Prentice Hall, 3rd Edition,2011.

2. S. Sridhar , “Digital Image Processing”, Oxford University Press,2011

If you have any suggestion/feedback or if you want videos on any topic related to digital image processing , please do comments in my video or write email to me: [email protected]

#DigitalImageProcessing #ImageProcessing #ComputerVision #MachineLearning #AIImageProcessing #ImageEnhancement #ImageSegmentation #ImageAnalysis #DataScience #DeepLearning #ImageRecognition #ImageFilters #OpenCV #ComputerGraphics #ImageProcessingTutorials #MorphologicalOperations #ImageMorphology #DigitalImageProcessing #digitalimageprocessing #btechexams #ImageProcessingNumericals #UniversityExams #BTechPreparation #MidTermExams #EndTermExams #EngineeringExams #NumericalProblems #ImageProcessingTutorials #BTechStudyGuide #DigitalSignalProcessing #ExamPreparation #EngineeringNumericals #IndiaBTechStudents

#histogram, #histogram equalization, #histogram matching, #histogram stretching, #histogram specification, #image enhancement, #image restoration, #image segmentation, #image compression

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]