Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть 6a. Learning Algorithms for Neural Networks | Introduction to Gradient Descent Part 1

  • Musavir Khaliq
  • 2025-08-17
  • 36
6a. Learning Algorithms for Neural Networks |  Introduction to Gradient Descent Part 1
  • ok logo

Скачать 6a. Learning Algorithms for Neural Networks | Introduction to Gradient Descent Part 1 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно 6a. Learning Algorithms for Neural Networks | Introduction to Gradient Descent Part 1 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку 6a. Learning Algorithms for Neural Networks | Introduction to Gradient Descent Part 1 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео 6a. Learning Algorithms for Neural Networks | Introduction to Gradient Descent Part 1

This lecture provided an in-depth exploration of learning algorithms for neural networks, focusing on the fundamental concepts that enable these networks to learn from data. The key topics covered included the process of guessing to find weights and bias, and an introduction to gradient descent, a crucial optimization technique in neural network training.
1. Introduction to Neural Network Learning
Neural networks learn through a process of adjusting their parameters (weights and biases) to minimize the difference between predicted outputs and actual outputs. This adjustment process is facilitated by learning algorithms.
2. Guessing to Find Weights and Bias
In the context of neural networks, weights and biases are parameters that are adjusted during the training process. Initially, these parameters can be thought of as being "guessed" or initialized randomly. Through iterative adjustments based on the data provided, the network refines these guesses to better fit the data. This process involves:
Initialization: Weights and biases are initialized, often randomly.
Forward Pass: The network makes predictions based on the current weights and biases.
Error Calculation: The difference between the predicted output and the actual output is calculated using a loss function.
3. Introduction to Gradient Descent
Gradient descent is a widely used optimization algorithm in neural network training. It is designed to minimize the loss function by iteratively adjusting the weights and biases in the direction of the negative gradient of the loss function. Key aspects of gradient descent include:
Loss Function: A mathematical function that measures the difference between the network's predictions and the actual outputs.
Gradient Calculation: The gradient of the loss function with respect to each weight and bias is calculated. This gradient indicates the direction of the steepest ascent, so moving in the opposite direction minimizes the loss.
Parameter Update: Weights and biases are updated based on the gradient and the learning rate, which controls the step size of each update.
4. Key Concepts and Takeaways
Learning Rate: A hyperparameter that controls how quickly the network learns from the data. A high learning rate can lead to rapid convergence but also risks overshooting the optimal solution.
Convergence: The process of the gradient descent algorithm reaching a minimum of the loss function. Ideally, this minimum is global, but in practice, local minima can also provide satisfactory solutions.
Challenges in Gradient Descent: Issues such as getting stuck in local minima, saddle points, or dealing with vanishing/exploding gradients in deep networks were touched upon, highlighting the complexity of training neural networks.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]