Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Speed performance for binomial option pricing using C++, Python, Cython, and Numba

  • Brian Byrne
  • 2024-11-18
  • 324
Speed performance for binomial  option pricing using C++, Python, Cython, and Numba
  • ok logo

Скачать Speed performance for binomial option pricing using C++, Python, Cython, and Numba бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Speed performance for binomial option pricing using C++, Python, Cython, and Numba или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Speed performance for binomial option pricing using C++, Python, Cython, and Numba бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Speed performance for binomial option pricing using C++, Python, Cython, and Numba

💻 Video Description:

In this video, we compare the speed performance of various implementations of a binomial tree model for option pricing using C++, Python, Cython, and Numba. The goal is to showcase the strengths and weaknesses of each approach in terms of computational efficiency, with a special focus on dynamic memory allocation and optimization techniques.

Key Highlights:
1. ⚡ C++ Speed Performance: Learn how compiled C++ code achieves fast execution times with efficient dynamic memory usage, leveraging vectors and in-place updates for optimal speed.
2. 🐍 Python Flexibility vs. Speed: Understand the trade-offs of using pure Python for binomial tree models, including its slower performance due to interpreted execution. The effect of using numpy.
3. 🚀 Boosting Python with Cython: See how Cython bridges the performance gap between Python and compiled languages by statically typing and compiling Python code.
4. 📈 Numba JIT Compilation: Discover how Numba accelerates Python code execution by compiling it to machine code at runtime, offering near-Cython/C++ speeds with minimal effort.

Dynamic Memory Optimization:
Dynamic memory allocation plays a critical role in improving speed by enabling efficient in-place updates and reducing memory overhead, especially in high-performance numerical models like the binomial tree.

🔗 Try it Yourself on Google Colab: [Access the Colab Notebook]
https://colab.research.google.com/dri...

Here’s a comparison of the speed performance for a 1,000-step binomial tree implementation in milliseconds (ms) for different approaches:

Speed Performance Comparison (1,000-Step Binomial Tree):
1. C++ Implementation:
Execution Time: Approximately 39 - 44 ms (based on converting seconds to milliseconds for comparison).
Highly optimized due to compiled execution, efficient memory handling, and minimal overhead.

2. Python Implementation:
Execution Time: Approximately 1,420 - 1,460 ms for not fully optmised code.
Slower due to Python's interpreted nature, limited memory optimizations, and inherent overhead of high-level operations.

3. Optimized Python (NumPy-based optimizations):
Execution Time: Approximately 58 - 62 ms, depending on optimizations applied.
Performance improves compared to pure Python due to vectorized operations, though still slower than compiled alternatives.
The binomial_faster function takes advantage of numpy's vectorization capabilities for array operations. This means that instead of iterating through elements one by one (as in the original binomial function), entire arrays are operated on simultaneously. This eliminates the overhead of Python loops and makes use of numpy's optimized C-implemented functions.
Vectorized operations are faster because they minimize the number of interpreted Python instructions and instead rely on highly optimized machine-level code.

4. Cython-Optimized Python:
Execution Time: Approximately 39 - 67 ms.
Close to C++ performance due to the compilation of Python code into C, static typing, and better memory access.

5. Numba (Just-In-Time Compilation):
Execution Time: Approximately 39 - 67 ms.
Near-Cython performance due to JIT compilation, which translates Python code to optimized machine code at runtime.

We would need larger sample size to be more confident regarding ranking performance. Variability was quite substantial between runs.

This comparison highlights how different levels of optimization and memory management affect performance, with compiled languages and JIT-compiled Python solutions demonstrating clear advantages over interpreted or unoptimized implementations.

🎥 Don't forget to like, subscribe, and hit the bell icon for more computational finance tutorials and performance analysis videos!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]