Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Characterizing Technical Debt and Antipatterns in AI-Based Systems: A Systematic Literature Review

  • ICSE 2021 Co-Located Events
  • 2021-06-21
  • 56
Characterizing Technical Debt and Antipatterns in AI-Based Systems: A Systematic Literature Review
  • ok logo

Скачать Characterizing Technical Debt and Antipatterns in AI-Based Systems: A Systematic Literature Review бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Characterizing Technical Debt and Antipatterns in AI-Based Systems: A Systematic Literature Review или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Characterizing Technical Debt and Antipatterns in AI-Based Systems: A Systematic Literature Review бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Characterizing Technical Debt and Antipatterns in AI-Based Systems: A Systematic Literature Review

Background: With the rising popularity of Artificial Intelligence (AI), there is a growing need to build large and complex AI-based systems in a cost-effective and manageable way. Like with traditional software, Technical Debt (TD) will emerge naturally over time in these systems, therefore leading to challenges and risks if not managed appropriately. The influence of data science and the stochastic nature of AI-based systems may also lead to new types of TD or antipatterns, which are not yet fully understood by researchers and practitioners.
Objective: The goal of our study is to provide a clear overview and characterization of the types of TD (both established and new ones) that appear in AI-based systems, as well as the antipatterns and related solutions that have been proposed.
Method: Following the process of a systematic mapping study, 21 primary studies are identified and analyzed.
Results: Our results show that (i) established TD types, variations of them, and four new TD types (data, model, configuration, and ethics debt) are present in AI-based systems, (ii) 72 antipatterns are discussed in the literature, the majority related to data and model deficiencies, and (iii) 46 solutions have been proposed, either to address specific TD types, antipatterns, or TD in general.
Conclusions: Our results can support AI professionals with reasoning about and communicating aspects of TD present in their systems. Additionally, they can serve as a foundation for future research to further our understanding of TD in AI-based systems.

Justus Bogner (University of Stuttgart, Institute of Software Engineering, Empirical Software Engineering Group), Roberto Verdecchia (Vrije Universiteit Amsterdam), Ilias Gerostathopoulos (Vrije Universiteit Amsterdam),

Characterizing Technical Debt and Antipatterns in AI-Based Systems: A Systematic Literature Review: https://arxiv.org/abs/2103.09783



Created with Clowdr: https://clowdr.org/

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]