Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Building a Robust Keras Multi Input Network: Handling Images and Structured Data

  • vlogize
  • 2025-09-28
  • 0
Building a Robust Keras Multi Input Network: Handling Images and Structured Data
Keras Multi Input Network using Images and structured data : How do I build the correct input data?pythontensorflowkerasinputdeep learning
  • ok logo

Скачать Building a Robust Keras Multi Input Network: Handling Images and Structured Data бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Building a Robust Keras Multi Input Network: Handling Images and Structured Data или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Building a Robust Keras Multi Input Network: Handling Images and Structured Data бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Building a Robust Keras Multi Input Network: Handling Images and Structured Data

Learn how to seamlessly combine images and structured data in a `Keras Multi Input Network` to optimize your deep learning models.
---
This video is based on the question https://stackoverflow.com/q/62997440/ asked by the user 'Durand' ( https://stackoverflow.com/u/13338574/ ) and on the answer https://stackoverflow.com/a/63580919/ provided by the user 'Durand' ( https://stackoverflow.com/u/13338574/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Keras Multi Input Network, using Images and structured data : How do I build the correct input data?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Introduction

When venturing into deep learning with Keras, one might encounter the challenge of creating a multi-input network, particularly when it involves different data types like images and structured metadata. This guide discusses how to effectively handle such scenarios, ensuring the correct input format is followed for successful model training. The problem arises when trying to combine various data sources into a cohesive input structure for your Keras model. Here's a detailed breakdown of the issue and the solution.

The Problem

A common issue faced while using Keras' functional API is combining different input types, such as images processed through a Convolutional Neural Network (CNN) and structured numerical data fed into a Multi-Layer Perceptron (MLP). In this context, we discussed:

An image input flowing through a fine-tuned ResNet50 CNN.

Metadata in the form of a NumPy array containing information about image dimensions and positions, which is directed into a simple dense network.

While the individual networks can be trained without any issues, combining these inputs and ensuring they maintain the right format for training leads to challenges. Specifically, the error received was:

[[See Video to Reveal this Text or Code Snippet]]

This indicates the requirement for a proper setup of input data that can be adequately processed by Keras.

The Solution

After researching and experimenting with various approaches, a feasible solution was implemented by using a custom data generator that can handle the simultaneous processing of both input types. Below, we dissect this solution into actionable steps:

Step 1: Preprocessing Function

First, you'll need to initialize your preprocessing function, which prepares image data for the ResNet50 model. The function ensures that images maintain the correct dimensionality.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Custom Data Generator

Next, a custom data generator is created to yield batches of image and metadata pairs. This generator maintains the order of the data, which is critical for ensuring that the right metadata corresponds to the correct image.

[[See Video to Reveal this Text or Code Snippet]]

Key Considerations

Maintaining Correspondence: The generator must ensure that images and corresponding metadata are correctly matched throughout different epochs and batches of training.

Handling Batch Sizes: It is crucial that each batch has a consistent size to prevent issues during training.

Conclusion

Creating a multi-input network in Keras using both images and structured data involves meticulous organization of input formats. Through the implementation of a custom data generator coupled with proper preprocessing of image data, one can circumvent the common pitfalls associated with mismatched input types. Adhering to these steps guarantees a smoother training process for deep learning models, allowing you to harness the full potential of your mixed-data sources.

Incorporating this approach into your projects will aid in building robust models, ultimately enhancing accuracy and performance. Happy coding and happy experimenting with your Keras multi-input networks!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]