Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Provable Non-convex Projections for High-dimensional Learning Problems - Part1

  • Microsoft Research
  • 2016-06-21
  • 630
Provable Non-convex Projections for High-dimensional Learning Problems - Part1
microsoft researchmachine learningdeep neural networks
  • ok logo

Скачать Provable Non-convex Projections for High-dimensional Learning Problems - Part1 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Provable Non-convex Projections for High-dimensional Learning Problems - Part1 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Provable Non-convex Projections for High-dimensional Learning Problems - Part1 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Provable Non-convex Projections for High-dimensional Learning Problems - Part1

Typical high-dimensional learning problems such as sparse regression, low-rank matrix completion, robust PCA etc can be solved using projections onto non-convex sets. However, providing theoretical guarantees for such methods is difficult due to the non-convexity in projections. In this talk, we will discuss some of our recent results that show that non-convex projections based methods can be used to solve several important problems in this area such as: a) sparse regression, b) low-rank matrix completion, c) robust PCA. In this talk, we will give an overview of the state-of-the-art for these problems and also discuss how simple non-convex techniques can significantly outperform state-of-the-art convex relaxation based techniques and provide solid theoretical results as well. For example, for robust PCA, we provide first provable algorithm with time complexity O(n 2 r) which matches the time complexity of normal SVD and is faster than the usual nuclear+L 1 -regularization methods that incur O(n 3 ) time complexity. This talk is based on joint works with Ambuj Tewari, Purushottam Kar, Praneeth Netrapalli, Animashree Anandkumar, U N Niranjan, and Sujay Sanghavi.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]