Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficient Calculation of Circular Distances in a 2D Grid using NumPy

  • vlogize
  • 2025-05-28
  • 0
Efficient Calculation of Circular Distances in a 2D Grid using NumPy
grid with circular distances pythonpythonnumpydistance
  • ok logo

Скачать Efficient Calculation of Circular Distances in a 2D Grid using NumPy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficient Calculation of Circular Distances in a 2D Grid using NumPy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficient Calculation of Circular Distances in a 2D Grid using NumPy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficient Calculation of Circular Distances in a 2D Grid using NumPy

Learn how to compute circular distances between points in a 2D grid using Python's NumPy. This guide provides a step-by-step breakdown of the necessary code and concepts.
---
This video is based on the question https://stackoverflow.com/q/67492686/ asked by the user 'Mauro Gentile' ( https://stackoverflow.com/u/3623123/ ) and on the answer https://stackoverflow.com/a/67493472/ provided by the user 'Luke' ( https://stackoverflow.com/u/643629/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: grid with circular distances python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Circular Distances in a 2D Grid with Python

When working with 2D grids in Python, especially in applications involving geometrical calculations or simulations, it's often necessary to compute distances between points in a circular fashion. For instance, if we consider a grid annotation where elements represent indices (i,j) of a 2D array, the challenge arises when points reach the grid's edges and wrap around to the other side.

In this guide, we will cover how to create a pair-wise distance matrix that respects these circular constraints using Python's powerful NumPy library.

The Problem Statement

Suppose we have a 2D grid characterized by:

Number of rows: q

Number of columns: p

Each point in this grid can be represented by its index, such that the element at a[i,j] equals (i,j). The challenge is to calculate the distance between these pairs of points considering the circularity of the grid:

Moving from the last column back to the first column (i.e., from a[i,p-1] to a[i,0]) should equal a distance of 1.

Similarly, moving from the last row back to the first row (i.e., from a[q-1,j] to a[0,j]) should also equal a distance of 1.

Implementing the Solution

Setting Up the Grid

The first step is to create our 2D grid. We'll use NumPy to generate a grid of indices.

[[See Video to Reveal this Text or Code Snippet]]

Calculating Differences Between Points

Next, we calculate the differences in indices between every pair of points in the grid. Here’s how we do it:

[[See Video to Reveal this Text or Code Snippet]]

This results in the diff array having a shape of (q, p, q, p, 2), capturing the differences for every combination of points.

Modifying for Circularity

To account for the circularity of the grid, we must adjust these differences where necessary:

[[See Video to Reveal this Text or Code Snippet]]

Computing the Distance Matrix

Finally, we compute the actual Euclidean distances from the adjusted differences:

[[See Video to Reveal this Text or Code Snippet]]

Testing the Results

After implementing the above code, it's always advisable to test the result to ensure correctness. Here are a few tests you can run:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using NumPy to compute circular distances in a 2D grid is not only efficient but also straightforward. This method allows you to handle edge cases where points may wrap around the grid, ensuring accurate distance measurements. By following the steps outlined in this guide, you can implement and modify the calculations to suit your needs effectively.



In summary, understanding how to implement circular distance calculations in grids paves the way for more advanced modeling and simulations in various applications ranging from game development to graphical plotting. By leveraging the power of NumPy, you gain efficiency and precision in your computations.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]