Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Подготовка (pre-processing) данных

  • Центр digital профессий ITtensive
  • 2020-05-13
  • 4011
Подготовка (pre-processing) данных
  • ok logo

Скачать Подготовка (pre-processing) данных бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Подготовка (pre-processing) данных или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Подготовка (pre-processing) данных бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Подготовка (pre-processing) данных

Запишетесь на полный курс Машинного обучения на Python по адресу [email protected]

После сбора всех данных и выявления всех ограничений и взаимосвязей финальный набор данных нужно подготовить к обработке моделью машинного обучения.

Нормирование и стандартизация
Большинство моделей лучше работают с значениями параметров, если они находятся в одном диапазоне - например, от 0 до 1. Поэтому сильно разнородные значения параметров принято приводить к одному диапазону: это повышает точность работы модели (почему так происходит, разберем в следующих уроках).

Для приведения значений независимых параметров к одному диапазону есть несколько вариантов. Первый - вычесть минимальное значение параметра из всех его значений и разделить на разницу между максимальным и минимальным. Тогда все значения этого параметра будут строго от 0 до 1 (за счет множителей можно добиться и значений от -3 до 3). Константы такого преобразования будут различаться от параметра к параметру.

Второй вариант - стандартизация (z-нормализация), приведение значений к нормальному распределению. Для этого из всех значений вычитают среднее и делят на корень из дисперсии. Значения параметра будут находиться примерно от -3 до 3. Этот вариант предпочтительнее, если значения параметра распределены нормально.

Категории и единичные векторы
Нормирование данных отлично работает для числовых (номинативных) и даже ранговых параметров. Но для категориальных признаков (например, пол респондента) не работает. Для корректной работы с категориальными данными их преобразуют в единичные векторы. Например, записи

id Пол
1 Мужской
2 Мужской
3 Женский
4 Женский

Становятся

id Пол_Мужской Пол_Женский
1 1 0
2 1 0
3 0 1
4 0 1

И затем эти значения можно преобразовать обычным образом.

Циклические значения
В ряде случаев вводят дополнительные параметры, синус и косинус от значения параметра, если параметр предполагает цикличность. Например, это может быть направление ветра (в градусах после 360 идет 0), день (от 1 до 365), неделя (от 1 до 53) и месяц (от 1 до 12) года - все эти значения идут по кругу.

Тригонометрические значения будут находиться в диапазоне от -1 до 1, поэтому дополнительно их можно разделить на 2 и прибавить 0,5, чтобы получить нормированные значения.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]