Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Noise-Aware Adaptation of Pre-trained Foundation Models for Single-photon Image Classification(TMLR)

  • Ziting Wen
  • 2025-12-27
  • 20
Noise-Aware Adaptation of Pre-trained Foundation Models for Single-photon Image Classification(TMLR)
  • ok logo

Скачать Noise-Aware Adaptation of Pre-trained Foundation Models for Single-photon Image Classification(TMLR) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Noise-Aware Adaptation of Pre-trained Foundation Models for Single-photon Image Classification(TMLR) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Noise-Aware Adaptation of Pre-trained Foundation Models for Single-photon Image Classification(TMLR) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Noise-Aware Adaptation of Pre-trained Foundation Models for Single-photon Image Classification(TMLR)

code link: https://github.com/ZiTingW/noise_adapter

Abstract: Adapting pre-trained foundation models to novel sensor modalities is a fundamental challenge. These models are pre-trained on large RGB datasets that typically lack exposure to the imaging characteristics of other modalities. Physical acquisition effects, such as photon statistics and sensor-specific noise, produce appearance shifts that are underrepresented in pre-training and can degrade transfer performance. We propose a noise-aware adaptation framework that conditions model adaptation on sensor-specific acquisition statistics. Central to our approach is a lightweight Noise Adapter that modulates pre-trained visual features using summary statistics of the sensor’s outputs, to decouple acquisition-induced appearance variation from semantics and improve robustness in low-label regimes. We instantiate this idea as a case study on single-photon LiDAR depth images by designing a Noise Adapter that leverages summary statistics computed from raw single-photon histograms for few-shot classification. We also present an exploratory analysis showing how learned modulation patterns correspond to noise-induced feature shifts, providing insight into the adapter’s role in feature robustness. Experiments on both synthetic and real single-photon datasets show that our method improves accuracy over baselines, with an average improvement of 3\% over the best baseline. These results suggest that explicitly conditioning adaptation on physical acquisition factors is a practical and promising strategy that may generalize to other non-standard modalities.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]