Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Finding Clusters and Communities Using an Adjacency Matrix in R

  • vlogize
  • 2025-05-26
  • 1
Finding Clusters and Communities Using an Adjacency Matrix in R
Clustering or finding community based on adjacency matrixcluster analysisigraphdata cleaningnetwork analysis
  • ok logo

Скачать Finding Clusters and Communities Using an Adjacency Matrix in R бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Finding Clusters and Communities Using an Adjacency Matrix in R или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Finding Clusters and Communities Using an Adjacency Matrix in R бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Finding Clusters and Communities Using an Adjacency Matrix in R

Discover how to identify clusters or communities in your data using adjacency matrices with R. Learn effective methods to group nodes based on direct and indirect relationships.
---
This video is based on the question https://stackoverflow.com/q/76685582/ asked by the user 'Jose' ( https://stackoverflow.com/u/17668137/ ) and on the answer https://stackoverflow.com/a/76690374/ provided by the user 'ThomasIsCoding' ( https://stackoverflow.com/u/12158757/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Clustering or finding community based on adjacency matrix

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Finding Clusters and Communities Using an Adjacency Matrix in R

The ability to identify clusters or communities within a dataset is crucial in various fields such as social network analysis, bioinformatics, and machine learning. This guide addresses a common challenge faced by many practitioners: how to effectively determine which nodes in your dataset belong to specific clusters based on their relationships, represented by an adjacency matrix.

Understanding the Problem

You may have a dataset consisting of nodes (or individuals) that exhibit relationships or connections with one another. The problem is defined as follows:

Each node may be connected to others either directly or indirectly.

A community consists of nodes that share any direct or indirect connection.

Nodes without any connection should form a separate cluster.

Example: Consider two groups A and B, each containing four nodes, represented by names like A1, A2, A3, A4, and B1, B2, B3, B4. The goal is to determine these clusters based solely on their connections without a priori knowledge of the groups.

The adjacency matrix in this example can be derived from a relationship table where values indicate the presence or absence of a connection (1 for connected and 0 for disconnected).

Getting Started: Structure Your Data

Before diving into the clustering process, you'll need to create your adjacency matrix. Here’s an example of how to represent this using a data frame in R.

Create the Data Frame: Define the relationships using the provided code snippet.

[[See Video to Reveal this Text or Code Snippet]]

Finding Clusters with igraph

Now that your data is structured properly, you can use the igraph package in R to find clusters easily. While initially nabbing onto cluster_fast_greedy() was an option, we recommend trying other methods that might offer better results in capturing all groups effectively.

Using Decompose

One efficient method involves decomposing the network graph derived from your adjacency matrix. You can do this as follows:

[[See Video to Reveal this Text or Code Snippet]]

The decompose() function returns a list of connected components, allowing you to observe distinct clusters within your dataset. Each component contains the nodes that are directly or indirectly connected.

Results and Interpretation

The output from decompose() would look something like this:

[[See Video to Reveal this Text or Code Snippet]]

These components represent different clusters, neatly grouping connected nodes together.

Conclusion

In summary, identifying clusters within a dataset based on an adjacency matrix can easily be achieved with R's igraph package. By structuring your data properly and utilizing the decompose() method, you can efficiently categorize nodes into their respective communities based on their relationships.

Don’t hesitate to experiment with other clustering functions in igraph, like clusters() or components(), to explore different aspects of your data. Happy clustering!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]