Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Efficiently Merge Multiple Pandas DataFrames Grouped by a Specific Column

  • vlogize
  • 2025-08-30
  • 0
How to Efficiently Merge Multiple Pandas DataFrames Grouped by a Specific Column
Pandas merge list of DFs based on grouping column valuepythonpandasnumpydataframe
  • ok logo

Скачать How to Efficiently Merge Multiple Pandas DataFrames Grouped by a Specific Column бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Efficiently Merge Multiple Pandas DataFrames Grouped by a Specific Column или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Efficiently Merge Multiple Pandas DataFrames Grouped by a Specific Column бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Efficiently Merge Multiple Pandas DataFrames Grouped by a Specific Column

Discover a simple and effective method to `merge` multiple Pandas DataFrames by a grouping column value. Save time and improve performance with this step-by-step guide.
---
This video is based on the question https://stackoverflow.com/q/64370349/ asked by the user 'data_person' ( https://stackoverflow.com/u/5927701/ ) and on the answer https://stackoverflow.com/a/64370436/ provided by the user 'Andrej Kesely' ( https://stackoverflow.com/u/10035985/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Pandas merge list of DFs based on grouping column value

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Merging Multiple DataFrames in Pandas: A Step-by-Step Guide

When working with data in Python, particularly with the Pandas library, you may often find yourself needing to combine multiple DataFrames based on a specific grouping column — in this case, the date. If you're faced with merging a list of DataFrames that share the same columns, but are struggling with inefficient and slow methods, this post is for you!

Introduction to the Problem

Imagine you have three separate DataFrames, each containing data about various fruits and their associated values on specific dates:

[[See Video to Reveal this Text or Code Snippet]]

You want to merge all these DataFrames into one, grouped by the date column, resulting in a comprehensive summary table. A common but ineffective approach is iterating through each date and DataFrame, which can be very slow and cumbersome. In this post, I will show you a more efficient way to accomplish this task.

Understanding the Current Iterative Approach

The current approach involves:

Creating an empty dictionary to store results for each date.

Looping through each date, checking each DataFrame for values related to that date, and merging them incrementally.

While this works, it is not efficient. For larger datasets, this method can take exponentially longer to execute due to multiple iterations.

Example of the Iterative Code:

[[See Video to Reveal this Text or Code Snippet]]

An Efficient Pandas Approach

Using pandas.concat()

Instead of using a loop, you can leverage the function pandas.concat(), which is designed to concatenate multiple DataFrames efficiently. After concatenating the DataFrames, you can sort the combined DataFrame by the date column to achieve the desired output.

Here’s How to Do It:

Concatenate DataFrames: Utilize pandas.concat(dfs) to combine the list of DataFrames into a single DataFrame.

Sort Values: Call .sort_values('date') to order the rows based on the date column.

The Code:

[[See Video to Reveal this Text or Code Snippet]]

Expected Output:

With this method, the output will be a single DataFrame that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

When merging multiple DataFrames in Pandas, using the pandas.concat() method followed by sorting is significantly more efficient than manually iterating through DataFrames. This approach leads to cleaner code and improved performance, allowing you to focus more on analysis rather than data manipulation.

If you have a lot of DataFrames to merge, try this method out and observe how it can simplify your workflow!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]