Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть AKBC 2020: Paper: Knowledge Graph Simple Question Answering for Unseen Domains

  • AKBC Conference
  • 2020-07-02
  • 328
AKBC 2020: Paper: Knowledge Graph Simple Question Answering for Unseen Domains
akbc2019
  • ok logo

Скачать AKBC 2020: Paper: Knowledge Graph Simple Question Answering for Unseen Domains бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно AKBC 2020: Paper: Knowledge Graph Simple Question Answering for Unseen Domains или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку AKBC 2020: Paper: Knowledge Graph Simple Question Answering for Unseen Domains бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео AKBC 2020: Paper: Knowledge Graph Simple Question Answering for Unseen Domains

Knowledge Graph Simple Question Answering for Unseen Domains

Georgios Sidiropoulos, Nikos Voskarides, Evangelos Kanoulas

Knowledge Graph Simple Question Answering (KGSQA), in its standard form, does not take into account that human-curated question answering training data only cover a small subset of the relations that exist in a Knowledge Graph (KG), or even worse, that new domains covering unseen and rather different to existing domains relations are added to the KG. In this work, we study KGQA for first-order questions in a previously unstudied setting where new, unseen, domains are added during test time. In this setting, question-answer pairs of the new domain do not appear during training, thus making the task more challenging. We propose a data-centric domain adaptation framework that consists of a KGQA system that is applicable to new domains, and a sequence to sequence question generation method that automatically generates question-answer pairs for the new domain. Since the effectiveness of question generation for KGQA can be restricted by the limited lexical variety of the generated questions, we use distant supervision to extract a set of keywords that express each relation of the unseen domain and incorporate those in the question generation method. Experimental results demonstrate that our framework significantly improves over zero-shot baselines and is robust across domains.

https://www.akbc.ws/2020/papers/Ie2Y9...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]