Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Machine Learning NeEDS Mathematical Optimization with Prof Ce Zhang

  • NeEDS - Network of European Data Scientists
  • 2022-11-16
  • 106
Machine Learning NeEDS Mathematical Optimization with Prof Ce Zhang
  • ok logo

Скачать Machine Learning NeEDS Mathematical Optimization with Prof Ce Zhang бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Machine Learning NeEDS Mathematical Optimization with Prof Ce Zhang или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Machine Learning NeEDS Mathematical Optimization with Prof Ce Zhang бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Machine Learning NeEDS Mathematical Optimization with Prof Ce Zhang

Abstract: Today’s machine learning models are trained dominantly in a centralized environment such as data centers. Such a strong dependency on closely coupled interconnections is causing problems not only with the cost of infrastructure, contributing to the staggering cost of model training (not uncommon to be in the million-dollar regime!) but also with the transparency and openness of today’s machine learning ecosystem. While a decentralized paradigm has been successfully applied to various other areas such as SETI@HOME and Folding@HOME, their adoption to machine learning comes with great challenges — today’s optimization algorithms that are designed for fast networks are inherently communication heavy. To bring AI into a decentralized future, we need to fundamentally rethink the training algorithm, system design, and hardware accelerations, all together.

In this talk, I will provide a personal reflection on our efforts in decentralized learning over the last decade, and put them into the context of many fascinating work that has been conducted by the community during the same period of time. I will also discuss my personal view on the future of decentralized learning and a “cry for help” with many challenges that we are still struggling with.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]