Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть USENIX ATC '25 - Accelerating Distributed Graph Learning by Using Collaborative In-Network...

  • USENIX
  • 2025-09-04
  • 59
USENIX ATC '25 - Accelerating Distributed Graph Learning by Using Collaborative In-Network...
usenixtechnologyconferenceopen access
  • ok logo

Скачать USENIX ATC '25 - Accelerating Distributed Graph Learning by Using Collaborative In-Network... бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно USENIX ATC '25 - Accelerating Distributed Graph Learning by Using Collaborative In-Network... или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку USENIX ATC '25 - Accelerating Distributed Graph Learning by Using Collaborative In-Network... бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео USENIX ATC '25 - Accelerating Distributed Graph Learning by Using Collaborative In-Network...

Accelerating Distributed Graph Learning by Using Collaborative In-Network Multicast and Aggregation

Zhaoyi Li, Central South University and Nanyang Technological University; Jiawei Huang, Yijun Li, and Jingling Liu, Central South University; Junxue Zhang, Hong Kong University of Science and Technology; Hui Li, Xiaojun Zhu, Shengwen Zhou, Jing Shao, Xiaojuan Lu, Qichen Su, and Jianxin Wang, Central South University; Chee Wei Tan, Nanyang Technological University; Yong Cui, Tsinghua University; Kai Chen, Hong Kong University of Science and Technology

Distributed GNN training systems typically partition large graphs into multiple subgraphs and train them across multiple workers to eliminate single-GPU memory limitations. However, the graph propagation in each iteration involves numerous one-to-many multicast and many-to-one aggregation operations across workers, resulting in massive redundant traffic and severe bandwidth bottlenecks. Offloading multicast and aggregation operations into programmable switches has the potential to reduce the traffic volume significantly. Unfortunately, the complex dependencies among graph data and the limited switch-aggregator resources lead to performance degradation. The graph-agnostic sending order results in excessive traffic in multicast operations, leading to a severe backlog. Additionally, a small number of vertices may consume the major part of aggregator resources, while most traffic misses the opportunity for in-network aggregation.
To tackle these challenges, we propose SwitchGNN, which accelerates graph learning through coordinated in-network multicast and aggregation. First, to alleviate the link under-utilization and queue backlog, we design a graph-aware multicast reordering algorithm, which prioritizes the upload of multicast vertices with the higher number of neighbors to reduce the communication time. Second, to prevent aggregator overflow, SwitchGNN employs a multi-level graph partitioning mechanism that further partitions boundary vertices into independent blocks to perform in-network aggregation in batches while ensuring the correctness of the graph propagation. We implement SwitchGNN using P4 programmable switch and DPDK host stack. The experimental results of the real testbed and NS3 simulations show that SwitchGNN effectively reduces the communication overhead and speeds up the training time by up to 74%.

View the full USENIX ATC '25 program at https://www.usenix.org/conference/atc...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]