Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Michael Unser: Wavelets and stochastic processes: how the Gaussian world became sparse

  • Centre International de Rencontres Mathématiques
  • 2015-08-05
  • 2111
Michael Unser: Wavelets and stochastic processes: how the Gaussian world became sparse
  • ok logo

Скачать Michael Unser: Wavelets and stochastic processes: how the Gaussian world became sparse бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Michael Unser: Wavelets and stochastic processes: how the Gaussian world became sparse или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Michael Unser: Wavelets and stochastic processes: how the Gaussian world became sparse бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Michael Unser: Wavelets and stochastic processes: how the Gaussian world became sparse

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities:
Chapter markers and keywords to watch the parts of your choice in the video
Videos enriched with abstracts, bibliographies, Mathematics Subject Classification
Multi-criteria search by author, title, tags, mathematical area

We start with a brief historical account of wavelets and of the way they shattered some of the preconceptions of the 20th century theory of statistical signal processing that is founded on the Gaussian hypothesis. The advent of wavelets led to the emergence of the concept of sparsity and resulted in important advances in image processing, compression, and the resolution of ill-posed inverse problems, including compressed sensing. In support of this change in paradigm, we introduce an extended class of stochastic processes specified by a generic (non-Gaussian) innovation model or, equivalently, as solutions of linear stochastic differential equations driven by white Lévy noise. Starting from first principles, we prove that the solutions of such equations are either Gaussian or sparse, at the exclusion of any other behavior. Moreover, we show that these processes admit a representation in a matched wavelet basis that is "sparse" and (approximately) decoupled. The proposed model lends itself well to an analytic treatment. It also has a strong predictive power in that it justifies the type of sparsity-promoting reconstruction methods that are currently being deployed in the field.

Recording during the thematic meeting: ''30 years of wavelets: impact and future'' the January 24, 2015 at the Centre International de Rencontres Mathématiques (Marseille, France)

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]