Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mastering tf.data for Time-Series Batching in LSTM Models

  • vlogize
  • 2025-10-07
  • 0
Mastering tf.data for Time-Series Batching in LSTM Models
Batching in tf.data.dataset in time-series analysispythontensorflowkerastensorflow2.0tensorflow datasets
  • ok logo

Скачать Mastering tf.data for Time-Series Batching in LSTM Models бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mastering tf.data for Time-Series Batching in LSTM Models или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mastering tf.data for Time-Series Batching in LSTM Models бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mastering tf.data for Time-Series Batching in LSTM Models

Learn how to efficiently batch time-series data using TensorFlow's tf.data to enhance your LSTM model's performance and prediction accuracy.
---
This video is based on the question https://stackoverflow.com/q/63533821/ asked by the user 'Jamie Dimon' ( https://stackoverflow.com/u/11065415/ ) and on the answer https://stackoverflow.com/a/63699653/ provided by the user 'Jamie Dimon' ( https://stackoverflow.com/u/11065415/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Batching in tf.data.dataset in time-series analysis

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering tf.data for Time-Series Batching in LSTM Models

When working with time-series data for LSTM (Long Short-Term Memory) models, effective data preparation is crucial. One common challenge people encounter is how to batch input data correctly while encapsulating the relationships between time steps. In this guide, we’ll dive into how to batch time-series data using TensorFlow's tf.data, specifically addressing a problem where we have two series of inputs and need to create overlapping batches.

Understanding the Problem

Suppose you have two streams of time-series data, series1 and series2. Your goal is to create a dataset from these series wherein each batch consists of two consecutive elements from series1 and two corresponding elements from series2. Additionally, you would like each batch to also include the next element from series1 as a label for training your LSTM model.

Here's what you're aiming for:

Input:

series1 = [1, 2, 3, 4, 5]

series2 = [100, 200, 300, 400, 500]

Desired Output:

Batch 1: ([1, 2, 100, 200], [3])

Batch 2: ([2, 3, 200, 300], [4])

Batch 3: ([3, 4, 300, 400], [5])

Initial Attempts

You may start with a straightforward batching approach, but encoding your requirements into direct mapping functions often leads to errors due to how TensorFlow handles dataset objects.

The Solution

To effectively perform this task, you must individually window the datasets, zip them together, and then manipulate the dataset to include the labels. Here’s a detailed breakdown:

Step-by-Step Implementation

Create Datasets from Tensors:
First, create datasets for each series using tf.data.Dataset.from_tensor_slices():

[[See Video to Reveal this Text or Code Snippet]]

Apply Windowing:
Now, window each dataset. This means grouping the time-series into "windows" or subsets:

[[See Video to Reveal this Text or Code Snippet]]

Flatten the Windows:
Use flat_map to batch each window, allowing you to work with them:

[[See Video to Reveal this Text or Code Snippet]]

Extract Labels:
Reorganize ds1 to split it into inputs and expected labels:

[[See Video to Reveal this Text or Code Snippet]]

Combine Datasets:
Use zip() to combine the two datasets together:

[[See Video to Reveal this Text or Code Snippet]]

Concatenate Inputs:
Lastly, concatenate the input tensors and return the label:

[[See Video to Reveal this Text or Code Snippet]]

Example Output

By following the above steps, your dataset should yield the following:

[[See Video to Reveal this Text or Code Snippet]]

You will produce batches similar to the originally stated requirement, allowing the model to learn with the next value of series1 as a prediction target.

Conclusion

By leveraging TensorFlow’s tf.data pipeline and following these structured steps, you can efficiently handle time-series data for your LSTM models. This method will not only ease data preparation but also ensure your model can learn meaningful patterns from the data.

Now, you are all set to implement this batching technique in your own time-series analysis projects and improve your model’s predictive accuracy!

If you have any questions or need further clarification, feel free to reach out in the comments below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]