Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Activating Recurrent Dropout in LSTM Models During Inference with TensorFlow Keras

  • vlogize
  • 2025-09-28
  • 0
Activating Recurrent Dropout in LSTM Models During Inference with TensorFlow Keras
Activate recurrent dropout when evaluating a model using tf.Keras.Sequential API and LSTMtensorflowmachine learningkeras
  • ok logo

Скачать Activating Recurrent Dropout in LSTM Models During Inference with TensorFlow Keras бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Activating Recurrent Dropout in LSTM Models During Inference with TensorFlow Keras или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Activating Recurrent Dropout in LSTM Models During Inference with TensorFlow Keras бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Activating Recurrent Dropout in LSTM Models During Inference with TensorFlow Keras

Learn how to enable `recurrent dropout` for your LSTM models in TensorFlow Keras during inference to improve prediction confidence.
---
This video is based on the question https://stackoverflow.com/q/63597656/ asked by the user 'ojp' ( https://stackoverflow.com/u/10138766/ ) and on the answer https://stackoverflow.com/a/63597883/ provided by the user 'Marco Cerliani' ( https://stackoverflow.com/u/10375049/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Activate recurrent dropout when evaluating a model using tf.Keras.Sequential API and LSTM

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Activating Recurrent Dropout in LSTM Models During Inference with TensorFlow Keras

When working with LSTM (Long Short-Term Memory) models using TensorFlow's Keras API, you might find yourself wanting to enhance the robustness of your predictions. A common approach to achieve this is by utilizing dropout, specifically recurrent dropout, during inference. This guide delves into how you can activate this feature effectively, especially when transitioning from training to evaluation phases.

The Problem: Enabling Dropout During Inference

You’ve trained your LSTM encoder/decoder model without dropout to gain performance, but now you want to integrate dropout for better uncertainty estimation in your predictions. The challenge arises when you’re unsure how to enable recurrent dropout while evaluating the model using the Keras Sequential API. More specifically, the confusion often stems from attempting to use the training=True argument in evaluation, which can lead to errors like:

[[See Video to Reveal this Text or Code Snippet]]

Understanding how to properly apply this argument can help you make your model's predictions more reliable.

The Solution: Use the Keras Functional API

To activate dropout during inference, you need to utilize the Keras Functional API rather than relying solely on the Sequential API. Here’s a breakdown of how to proceed:

Step 1: Define Your Input Layer

Begin by defining your input shape. For instance, if your input has 10 time steps and 1 feature, it would be set up as follows:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Create the LSTM Layer with Dropout

Incorporate the LSTM layer along with the recurrent_dropout parameter. Here is where the magic happens; remember that you'll need to set training=True during inference:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Build the Model

Next, compile the model just like you would normally:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Make Predictions

Once your model is set up, you can create sample data for testing. Here is how you can execute predictions while effectively incorporating recurrent dropout:

[[See Video to Reveal this Text or Code Snippet]]

When you execute this loop, you will observe that the predictions are inconsistent across different iterations, showcasing the impact of enabling recurrent dropout during inference.

Why Use Dropout During Inference?

Uncertainty Estimation: By utilizing recurrent dropout, you can estimate the variability in the model's predictions, allowing for better insights into the confidence of your estimations.

Regularization Effect: It introduces a regularization effect during inference, which often leads to more generalized predictions.

Conclusion

Enabling recurrent dropout during inference in your LSTM models can significantly enhance your ability to gauge prediction confidence. By employing the Keras Functional API, you’ll have full control to specify training=True when needed. Don’t hesitate to experiment with this approach to see how it affects your model's performance and prediction reliability. Happy modeling!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]