Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Multiprocessing a Loop for Your GIS Data Processing in Python

  • vlogize
  • 2025-03-23
  • 4
Efficiently Multiprocessing a Loop for Your GIS Data Processing in Python
Multiprocessing a looppythonpandasmultiprocessing
  • ok logo

Скачать Efficiently Multiprocessing a Loop for Your GIS Data Processing in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Multiprocessing a Loop for Your GIS Data Processing in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Multiprocessing a Loop for Your GIS Data Processing in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Multiprocessing a Loop for Your GIS Data Processing in Python

Discover how to utilize Python's multiprocessing for looping over large pandas dataframes and improve your GIS data processing speed.
---
This video is based on the question https://stackoverflow.com/q/74185743/ asked by the user 'MrKingsley' ( https://stackoverflow.com/u/4475666/ ) and on the answer https://stackoverflow.com/a/74186615/ provided by the user 'Ahmed AEK' ( https://stackoverflow.com/u/15649230/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Multiprocessing a loop

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Multiprocessing a Loop for Your GIS Data Processing in Python

When working with large datasets, particularly with GIS (Geographic Information Systems) data in a pandas DataFrame, the performance of your code can become a significant bottleneck. If you find yourself waiting too long for your script to run, especially with data involving thousands of records, consider utilizing Python's multiprocessing capabilities to enhance your processing speed. In this post, we’ll dive into how to set up and structure your code effectively to leverage multiprocessing with your pandas DataFrame.

The Problem: Long Processing Times

You may be looping over a pandas DataFrame to execute complex GIS operations, and with over 4,000 records, the time taken can be substantial. The initial approach is often with a simple for loop, which can become slow and inefficient. A user shared their experience running a loop through a DataFrame and encountering issues when transitioning to multiprocessing.

They provided the following code snippet:

[[See Video to Reveal this Text or Code Snippet]]

When running this code, the user found numerous Python tasks initiated but no actual progress. So, what's going wrong?

Understanding the Issue

The core problem arises from the fact that on operating systems like Windows and macOS, multiprocessing uses the spawn method to initiate new processes. This means:

Each new child process must find the function it needs to execute when importing the script.

If the function is defined inside a block that is not accessible to these child processes (like if _name_ == '__main__':), the workers will crash, as they can’t see the function.

Moving the Function

To resolve this issue, simply move the function definition outside of the if __name__=='__main__': block. Here’s how to do it:

[[See Video to Reveal this Text or Code Snippet]]

Implementing the Solution

Code Structure

Here's a structured presentation of how to set up your code with multiprocessing for a pandas DataFrame:

Import Necessary Libraries: Ensure you have all the libraries you need at the outset.

Define Your Function: This function will process the data from each row of your DataFrame.

Set Up Multiprocessing: Start the pool and run the function on your DataFrame rows.

Example Code

[[See Video to Reveal this Text or Code Snippet]]

Important Considerations

The time.sleep(1) in the task function is simply a placeholder to illustrate delay; you should replace it with actual processing logic.

Understand that excessive use of multiprocessing can lead to overhead due to data transfer between processes. Ensure your tasks are computationally intense.

Run your code serially before implementing multiprocessing to ensure that it works correctly without multiprocessing complexities.

Conclusion

Utilizing multiprocessing with your pandas DataFrame can significantly improve the performance of your GIS data processing tasks. By ensuring that your function definitions are correctly placed outside of the conditional block that checks for __main__, you eliminate the crashing of child processes. Test your code in smaller segments and progressively scale to enhance your efficiency.

By applying these principles, you can efficiently process large datasets and save precious time. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]